MedualTime: A Dual-Adapter Language Model for Medical Time Series-Text Multimodal Learning
- URL: http://arxiv.org/abs/2406.06620v3
- Date: Mon, 12 May 2025 13:27:11 GMT
- Title: MedualTime: A Dual-Adapter Language Model for Medical Time Series-Text Multimodal Learning
- Authors: Jiexia Ye, Weiqi Zhang, Ziyue Li, Jia Li, Meng Zhao, Fugee Tsung,
- Abstract summary: MedualTime is a language model composed of dual adapters to implement temporal-primary and textual-primary modeling simultaneously.<n>MedualTime demonstrates superior performance on medical data, achieving notable improvements of 8% accuracy and 12% F1 in supervised settings.
- Score: 27.22751020503897
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent rapid advancements in language models (LMs) have garnered attention in medical time series-text multimodal learning. However, existing contrastive learning-based and prompt-based LM approaches tend to be biased, often assigning a primary role to time series modality while treating text modality as secondary. We classify these approaches under a temporal-primary paradigm, which may overlook the unique and critical task-relevant information embedded in text modality like clinical reports, thus failing to fully leverage mutual benefits and complementarity of different modalities. To fill this gap, we propose a novel textual-temporal multimodal learning paradigm that enables either modality to serve as the primary while being enhanced by the other, thereby effectively capturing modality-specific information and fostering cross-modal interaction. In specific, we design MedualTime, a language model composed of dual adapters to implement temporal-primary and textual-primary modeling simultaneously. Within each adapter, lightweight adaptation tokens are injected into the top layers of LM to encourage high-level modality fusion. The shared LM pipeline by dual adapters not only achieves adapter alignment but also enables efficient fine-tuning, reducing computational resources. Empirically, MedualTime demonstrates superior performance on medical data, achieving notable improvements of 8% accuracy and 12% F1 in supervised settings. Furthermore, MedualTime's transferability is validated by few-shot label transfer experiments from coarse-grained to fine-grained medical data. https://github.com/start2020/MedualTime
Related papers
- NEARL-CLIP: Interacted Query Adaptation with Orthogonal Regularization for Medical Vision-Language Understanding [51.63264715941068]
textbfNEARL-CLIP (iunderlineNteracted quunderlineEry underlineAdaptation with ounderlineRthogonaunderlineL Regularization) is a novel cross-modality interaction VLM-based framework.
arXiv Detail & Related papers (2025-08-06T05:44:01Z) - Adapting Large Language Models for Time Series Modeling via a Novel Parameter-efficient Adaptation Method [9.412920379798928]
Time series modeling holds significant importance in many real-world applications.
We propose the Time-LlaMA framework to align the time series and natural language modalities.
We show that our proposed method achieves the state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2025-02-19T13:52:26Z) - ProMedTS: A Self-Supervised, Prompt-Guided Multimodal Approach for Integrating Medical Text and Time Series [27.70300880284899]
Large language models (LLMs) have shown remarkable performance in vision-grained tasks, but their application in the medical field remains underexplored.<n>We introduce ProMedTS, a novel self-supervised multimodal framework that employs prompt-guided learning to unify data types.<n>We evaluate ProMedTS on disease diagnosis tasks using real-world datasets, and the results demonstrate that our method consistently outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2025-02-19T07:56:48Z) - MIND: Modality-Informed Knowledge Distillation Framework for Multimodal Clinical Prediction Tasks [50.98856172702256]
We propose the Modality-INformed knowledge Distillation (MIND) framework, a multimodal model compression approach.
MIND transfers knowledge from ensembles of pre-trained deep neural networks of varying sizes into a smaller multimodal student.
We evaluate MIND on binary and multilabel clinical prediction tasks using time series data and chest X-ray images.
arXiv Detail & Related papers (2025-02-03T08:50:00Z) - TempoGPT: Enhancing Time Series Reasoning via Quantizing Embedding [13.996105878417204]
We propose a multi-modal time series data construction approach and a multi-modal time series language model (TLM), TempoGPT.
We construct multi-modal data for complex reasoning tasks by analyzing the variable-system relationships within a white-box system.
Extensive experiments demonstrate that TempoGPT accurately perceives temporal information, logically infers conclusions, and achieves state-of-the-art in the constructed complex time series reasoning tasks.
arXiv Detail & Related papers (2025-01-13T13:47:05Z) - Multi-Modal One-Shot Federated Ensemble Learning for Medical Data with Vision Large Language Model [27.299068494473016]
We introduce FedMME, an innovative one-shot multi-modal federated ensemble learning framework.<n>FedMME capitalizes on vision large language models to produce textual reports from medical images.<n>It surpasses existing one-shot federated learning approaches by more than 17.5% in accuracy on the RSNA dataset.
arXiv Detail & Related papers (2025-01-06T08:36:28Z) - Generalized Prompt Tuning: Adapting Frozen Univariate Time Series Foundation Models for Multivariate Healthcare Time Series [3.9599054392856483]
Time series foundation models are pre-trained on large datasets and are able to achieve state-of-the-art performance in diverse tasks.
We propose a prompt-tuning-inspired fine-tuning technique, Gen-P-Tuning, that enables us to adapt an existing univariate time series foundation model.
We demonstrate the effectiveness of our fine-tuning approach against various baselines on two MIMIC classification tasks, and on influenza-like illness forecasting.
arXiv Detail & Related papers (2024-11-19T19:20:58Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Semantic-Guided Multimodal Sentiment Decoding with Adversarial Temporal-Invariant Learning [22.54577327204281]
Multimodal sentiment analysis aims to learn representations from different modalities to identify human emotions.
Existing works often neglect the frame-level redundancy inherent in continuous time series, resulting in incomplete modality representations with noise.
We propose temporal-invariant learning for the first time, which constrains the distributional variations over time steps to effectively capture long-term temporal dynamics.
arXiv Detail & Related papers (2024-08-30T03:28:40Z) - Unlocking the Power of Spatial and Temporal Information in Medical Multimodal Pre-training [99.2891802841936]
We introduce the Med-ST framework for fine-grained spatial and temporal modeling.
For spatial modeling, Med-ST employs the Mixture of View Expert (MoVE) architecture to integrate different visual features from both frontal and lateral views.
For temporal modeling, we propose a novel cross-modal bidirectional cycle consistency objective by forward mapping classification (FMC) and reverse mapping regression (RMR)
arXiv Detail & Related papers (2024-05-30T03:15:09Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Temporal Cross-Attention for Dynamic Embedding and Tokenization of Multimodal Electronic Health Records [1.6609516435725236]
We introduce a dynamic embedding and tokenization framework for precise representation of multimodal clinical time series.
Our framework outperformed baseline approaches on the task of predicting the occurrence of nine postoperative complications.
arXiv Detail & Related papers (2024-03-06T19:46:44Z) - C^2M-DoT: Cross-modal consistent multi-view medical report generation
with domain transfer network [67.97926983664676]
We propose a cross-modal consistent multi-view medical report generation with a domain transfer network (C2M-DoT)
C2M-DoT substantially outperforms state-of-the-art baselines in all metrics.
arXiv Detail & Related papers (2023-10-09T02:31:36Z) - Towards Unifying Medical Vision-and-Language Pre-training via Soft
Prompts [63.84720380390935]
There exist two typical types, textiti.e., the fusion-encoder type and the dual-encoder type, depending on whether a heavy fusion module is used.
We propose an effective yet straightforward scheme named PTUnifier to unify the two types.
We first unify the input format by introducing visual and textual prompts, which serve as a feature bank that stores the most representative images/texts.
arXiv Detail & Related papers (2023-02-17T15:43:42Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
Self-supervised learning in vision-language processing exploits semantic alignment between imaging and text modalities.
We explicitly account for prior images and reports when available during both training and fine-tuning.
Our approach, named BioViL-T, uses a CNN-Transformer hybrid multi-image encoder trained jointly with a text model.
arXiv Detail & Related papers (2023-01-11T16:35:33Z) - Unified Discrete Diffusion for Simultaneous Vision-Language Generation [78.21352271140472]
We present a unified multimodal generation model that can conduct both the "modality translation" and "multi-modality generation" tasks.
Specifically, we unify the discrete diffusion process for multimodal signals by proposing a unified transition matrix.
Our proposed method can perform comparably to the state-of-the-art solutions in various generation tasks.
arXiv Detail & Related papers (2022-11-27T14:46:01Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
We propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations.
Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes.
arXiv Detail & Related papers (2022-10-06T17:59:56Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.