MIND: Modality-Informed Knowledge Distillation Framework for Multimodal Clinical Prediction Tasks
- URL: http://arxiv.org/abs/2502.01158v1
- Date: Mon, 03 Feb 2025 08:50:00 GMT
- Title: MIND: Modality-Informed Knowledge Distillation Framework for Multimodal Clinical Prediction Tasks
- Authors: Alejandro Guerra-Manzanares, Farah E. Shamout,
- Abstract summary: We propose the Modality-INformed knowledge Distillation (MIND) framework, a multimodal model compression approach.
MIND transfers knowledge from ensembles of pre-trained deep neural networks of varying sizes into a smaller multimodal student.
We evaluate MIND on binary and multilabel clinical prediction tasks using time series data and chest X-ray images.
- Score: 50.98856172702256
- License:
- Abstract: Multimodal fusion leverages information across modalities to learn better feature representations with the goal of improving performance in fusion-based tasks. However, multimodal datasets, especially in medical settings, are typically smaller than their unimodal counterparts, which can impede the performance of multimodal models. Additionally, the increase in the number of modalities is often associated with an overall increase in the size of the multimodal network, which may be undesirable in medical use cases. Utilizing smaller unimodal encoders may lead to sub-optimal performance, particularly when dealing with high-dimensional clinical data. In this paper, we propose the Modality-INformed knowledge Distillation (MIND) framework, a multimodal model compression approach based on knowledge distillation that transfers knowledge from ensembles of pre-trained deep neural networks of varying sizes into a smaller multimodal student. The teacher models consist of unimodal networks, allowing the student to learn from diverse representations. MIND employs multi-head joint fusion models, as opposed to single-head models, enabling the use of unimodal encoders in the case of unimodal samples without requiring imputation or masking of absent modalities. As a result, MIND generates an optimized multimodal model, enhancing both multimodal and unimodal representations. It can also be leveraged to balance multimodal learning during training. We evaluate MIND on binary and multilabel clinical prediction tasks using time series data and chest X-ray images. Additionally, we assess the generalizability of the MIND framework on three non-medical multimodal multiclass datasets. Experimental results demonstrate that MIND enhances the performance of the smaller multimodal network across all five tasks, as well as various fusion methods and multimodal architectures, compared to state-of-the-art baselines.
Related papers
- MM-Lego: Modular Biomedical Multimodal Models with Minimal Fine-Tuning [10.774128925670183]
Multimodal Lego (MM-Lego) is a modular and general-purpose fusion and model merging framework.
We show that MM-Lego can be used as a model merging method with end-to-end fusion models without any fine-tuning.
It achieves state-of-the-art results on six benchmarked multimodal biomedical tasks.
arXiv Detail & Related papers (2024-05-30T11:14:01Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts [54.529880848937104]
We develop a unified MLLM with the MoE architecture, named Uni-MoE, that can handle a wide array of modalities.
Specifically, it features modality-specific encoders with connectors for a unified multimodal representation.
We evaluate the instruction-tuned Uni-MoE on a comprehensive set of multimodal datasets.
arXiv Detail & Related papers (2024-05-18T12:16:01Z) - Generative Multimodal Models are In-Context Learners [60.50927925426832]
We introduce Emu2, a generative multimodal model with 37 billion parameters, trained on large-scale multimodal sequences.
Emu2 exhibits strong multimodal in-context learning abilities, even emerging to solve tasks that require on-the-fly reasoning.
arXiv Detail & Related papers (2023-12-20T18:59:58Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
This paper investigates how to better leverage large-scale pre-trained uni-modal models to enhance discriminative multi-modal learning.
We introduce Multi-Modal Low-Rank Adaptation learning (MMLoRA)
arXiv Detail & Related papers (2023-10-08T15:01:54Z) - How to Sense the World: Leveraging Hierarchy in Multimodal Perception
for Robust Reinforcement Learning Agents [9.840104333194663]
We argue for hierarchy in the design of representation models and contribute with a novel multimodal representation model, MUSE.
MUSE is the sensory representation model of deep reinforcement learning agents provided with multimodal observations in Atari games.
We perform a comparative study over different designs of reinforcement learning agents, showing that MUSE allows agents to perform tasks under incomplete perceptual experience with minimal performance loss.
arXiv Detail & Related papers (2021-10-07T16:35:23Z) - Multimodal Knowledge Expansion [14.332957885505547]
We propose a knowledge distillation-based framework to utilize multimodal data without requiring labels.
We show that a multimodal student model consistently denoises pseudo labels and generalizes better than its teacher.
arXiv Detail & Related papers (2021-03-26T12:32:07Z) - Relating by Contrasting: A Data-efficient Framework for Multimodal
Generative Models [86.9292779620645]
We develop a contrastive framework for generative model learning, allowing us to train the model not just by the commonality between modalities, but by the distinction between "related" and "unrelated" multimodal data.
Under our proposed framework, the generative model can accurately identify related samples from unrelated ones, making it possible to make use of the plentiful unlabeled, unpaired multimodal data.
arXiv Detail & Related papers (2020-07-02T15:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.