論文の概要: Exploring the Determinants of Pedestrian Crash Severity Using an AutoML Approach
- arxiv url: http://arxiv.org/abs/2406.06624v1
- Date: Fri, 7 Jun 2024 22:02:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 20:54:41.207934
- Title: Exploring the Determinants of Pedestrian Crash Severity Using an AutoML Approach
- Title(参考訳): AutoMLアプローチによる歩行者衝突重症度の決定要因の探索
- Authors: Amir Rafe, Patrick A. Singleton,
- Abstract要約: この研究は、さまざまな説明変数がクラッシュ結果に与える影響を評価するためにAutoMLを使用している。
この研究は、予測モデルにおける個々の特徴の寄与を解釈するために、SHAP(SHapley Additive exPlanations)を組み込んだ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study investigates pedestrian crash severity through Automated Machine Learning (AutoML), offering a streamlined and accessible method for analyzing critical factors. Utilizing a detailed dataset from Utah spanning 2010-2021, the research employs AutoML to assess the effects of various explanatory variables on crash outcomes. The study incorporates SHAP (SHapley Additive exPlanations) to interpret the contributions of individual features in the predictive model, enhancing the understanding of influential factors such as lighting conditions, road type, and weather on pedestrian crash severity. Emphasizing the efficiency and democratization of data-driven methodologies, the paper discusses the benefits of using AutoML in traffic safety analysis. This integration of AutoML with SHAP analysis not only bolsters predictive accuracy but also improves interpretability, offering critical insights into effective pedestrian safety measures. The findings highlight the potential of this approach in advancing the analysis of pedestrian crash severity.
- Abstract(参考訳): 本研究では,自動機械学習(Automated Machine Learning, AutoML)による歩行者事故の重大度調査を行い,重要な要因を分析するための合理化・アクセス可能な方法を提案する。
2010-2021年のユタ州の詳細なデータセットを利用して、さまざまな説明変数がクラッシュ結果に与える影響を評価するためにAutoMLを使用している。
この研究は、SHAP(SHapley Additive exPlanations)を取り入れ、予測モデルにおける個々の特徴の寄与を解釈し、照明条件、道路タイプ、歩行者の衝突重大度に対する天候などの影響要因の理解を深める。
本稿では,データ駆動手法の効率性と民主化を重視し,交通安全解析におけるAutoMLの利点について論じる。
このAutoMLとSHAP分析の統合は、予測精度を高めるだけでなく、解釈可能性も向上し、効果的な歩行者安全対策に関する重要な洞察を提供する。
本研究は,歩行者事故の重症度分析を進める上でのこのアプローチの可能性を明らかにするものである。
関連論文リスト
- Traffic and Safety Rule Compliance of Humans in Diverse Driving Situations [48.924085579865334]
安全な運転プラクティスを再現する自律システムを開発するためには、人間のデータを分析することが不可欠だ。
本稿では,複数の軌道予測データセットにおける交通・安全規則の適合性の比較評価を行う。
論文 参考訳(メタデータ) (2024-11-04T09:21:00Z) - An Explainable Machine Learning Approach to Traffic Accident Fatality Prediction [0.02730969268472861]
道路交通事故は世界中で公衆衛生上の脅威となっている。
本研究では,致命的および致命的でない道路事故を分類するための機械学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-09-18T12:41:56Z) - Exploring the Causality of End-to-End Autonomous Driving [57.631400236930375]
本稿では,エンドツーエンド自動運転の因果関係を探究し,分析するための包括的アプローチを提案する。
私たちの研究は、エンドツーエンドの自動運転の謎を初めて明らかにし、ブラックボックスを白い箱に変えた。
論文 参考訳(メタデータ) (2024-07-09T04:56:11Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
我々は,CrashEventという大規模トラフィッククラッシュ言語データセットを提案し,実世界のクラッシュレポート19,340を要約した。
さらに,クラッシュイベントの特徴学習を,新たなテキスト推論問題として定式化し,さらに様々な大規模言語モデル(LLM)を微調整して,詳細な事故結果を予測する。
実験の結果, LLMに基づくアプローチは事故の重大度を予測できるだけでなく, 事故の種類を分類し, 損害を予測できることがわかった。
論文 参考訳(メタデータ) (2024-06-16T03:10:16Z) - Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
無人航空機(UAV)は将来のスマートシティにとって重要なインフラ要素となるだろう。
効率的な運用のためには、UAVの信頼性は障害や故障の常時監視によって保証されなければならない。
本稿では,信号処理と機械学習を利用して,包括的振動解析データを分析し,ローターブレードの欠陥の有無を判定する。
論文 参考訳(メタデータ) (2024-04-24T13:50:27Z) - DRUformer: Enhancing the driving scene Important object detection with
driving relationship self-understanding [50.81809690183755]
交通事故はしばしば致命傷を負い、2023年まで5000万人以上の死者を出した。
従来の研究は、主に個々の参加者の重要性を評価し、それらを独立した存在として扱うものであった。
本稿では、重要な物体検出タスクを強化するために、運転シーン関連自己理解変換器(DRUformer)を紹介する。
論文 参考訳(メタデータ) (2023-11-11T07:26:47Z) - Evaluating Pedestrian Trajectory Prediction Methods with Respect to Autonomous Driving [0.9217021281095907]
本稿では,単一軌跡生成の文脈における歩行者軌跡予測における技術の現状を評価する。
評価は、平均変位誤差(ADE)と最終変位誤差(FDE)を報告した広く使われているETH/UCYデータセット上で行われる。
論文 参考訳(メタデータ) (2023-08-09T19:21:50Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Predicting Driver Takeover Time in Conditionally Automated Driving [14.861880139643942]
安全な乗っ取り遷移を定量化する重要な要因の1つは、乗っ取り時間である。
以前の研究では、テイクオーバリードタイム、非運転タスク、テイクオーバリクエスト(TOR)のモダリティ、シナリオ緊急性など、多くの要因がテイクオーバ時間に与える影響が特定された。
メタ分析によるデータセットを用いて,eXtreme Gradient Boostingを用いてテイクオーバー時間の予測を行った。
論文 参考訳(メタデータ) (2021-07-20T15:01:49Z) - Pedestrian Behavior Prediction for Automated Driving: Requirements,
Metrics, and Relevant Features [1.1888947789336193]
システムレベルアプローチによる自動走行の歩行者行動予測の要件を分析した。
人間の運転行動に基づいて、自動走行車の適切な反応パターンを導出する。
複数の文脈的手がかりを組み込んだ変分条件自動エンコーダに基づく歩行者予測モデルを提案する。
論文 参考訳(メタデータ) (2020-12-15T16:52:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。