論文の概要: Particle Multi-Axis Transformer for Jet Tagging
- arxiv url: http://arxiv.org/abs/2406.06638v1
- Date: Sun, 9 Jun 2024 10:34:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 20:44:57.275425
- Title: Particle Multi-Axis Transformer for Jet Tagging
- Title(参考訳): ジェットタグ用粒子多軸変圧器
- Authors: Muhammad Usman, M Husnain Shahid, Maheen Ejaz, Ummay Hani, Nayab Fatima, Abdul Rehman Khan, Asifullah Khan, Nasir Majid Mirza,
- Abstract要約: 本稿では,新しいアーキテクチャであるParticle Multi-Axis transformer (ParMAT)を提案する。
ParMATは単一ユニット内の局所的およびグローバルな空間的相互作用を含み、様々な入力長を扱う能力を向上させる。
JETCLASSは10種類の粒子からなる1億基のジェットを含む,公開可能な大規模データセットである。
- 参考スコア(独自算出の注目度): 0.774199694856838
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Jet tagging is an essential categorization problem in high energy physics. In recent times, Deep Learning has not only risen to the challenge of jet tagging but also significantly improved its performance. In this article, we propose an idea of a new architecture, Particle Multi-Axis transformer (ParMAT) which is a modified version of Particle transformer (ParT). ParMAT contains local and global spatial interactions within a single unit which improves its ability to handle various input lengths. We trained our model on JETCLASS, a publicly available large dataset that contains 100M jets of 10 different classes of particles. By integrating a parallel attention mechanism and pairwise interactions of particles in the attention mechanism,ParMAT achieves robustness and higher accuracy over the ParT and ParticleNet. The scalability of the model to huge datasets and its ability to automatically extract essential features demonstrate its potential for enhancing jet tagging.
- Abstract(参考訳): ジェットタグは高エネルギー物理学において重要な分類問題である。
近年、Deep Learningはジェットタグ付けの課題に発展しただけでなく、パフォーマンスも大幅に向上した。
本稿では,新しいアーキテクチャであるParticle Multi-Axis transformer (ParMAT)を提案する。
ParMATは単一ユニット内の局所的およびグローバルな空間的相互作用を含み、様々な入力長を扱う能力を向上させる。
JETCLASSは10種類の粒子からなる1億基のジェットを含む,公開可能な大規模データセットである。
ParMATは、パラレルアテンション機構と粒子のペアワイズ相互作用を統合することにより、ParTとParticleNetに対するロバスト性と高い精度を実現する。
巨大なデータセットへのモデルのスケーラビリティと、重要な特徴を自動的に抽出する能力は、ジェットタグの強化の可能性を示している。
関連論文リスト
- Ultra Fast Transformers on FPGAs for Particle Physics Experiments [2.666074491398626]
本研究では、FPGA(Field-Programmable Gate Array)上でのトランスフォーマーアーキテクチャの高効率実装を提案する。
我々は,マルチヘッドアテンションやソフトマックス層などのトランスフォーマーモデルの重要なコンポーネントを実装した。
CERNのハードウェアトリガ要件と互換性のあるXilinx UltraScale+ FPGA上で,レイテンシを2$mu$sで記録した。
論文 参考訳(メタデータ) (2024-02-01T22:32:39Z) - Isomer: Isomerous Transformer for Zero-shot Video Object Segmentation [59.91357714415056]
コンテクスト共有変換器(CST)とセマンティックガザリング散乱変換器(SGST)の2つの変種を提案する。
CSTは、軽量な計算により、画像フレーム内のグローバル共有コンテキスト情報を学習し、SGSTは、前景と背景のセマンティック相関を別々にモデル化する。
多段核融合にバニラ変換器を使用するベースラインと比較して,我々は13倍の速度向上を実現し,新しい最先端ZVOS性能を実現する。
論文 参考訳(メタデータ) (2023-08-13T06:12:00Z) - EPiC-GAN: Equivariant Point Cloud Generation for Particle Jets [0.0]
EPiC-GAN - 同変点雲生成逆数ネットワーク - を導入し、可変多重性の点雲を生成する。
EPiC-GANは、大規模粒子乗数によく対応し、ベンチマークジェット生成タスクにおける高世代忠実性を実現する。
論文 参考訳(メタデータ) (2023-01-17T19:00:00Z) - Transformer with Implicit Edges for Particle-based Physics Simulation [135.77656965678196]
Implicit Edges (TIE) を用いたトランスフォーマーは、素粒子相互作用のリッチなセマンティクスをエッジフリーでキャプチャする。
様々な複雑さと素材の多様な領域におけるモデルの評価を行った。
論文 参考訳(メタデータ) (2022-07-22T03:45:29Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - Particle Transformer for Jet Tagging [4.604003661048267]
ジェットタグのための新しい包括的データセットであるJetClassを提示する。
データセットは100Mジェットで構成され、既存の公開データセットよりも約2桁大きい。
我々は、ParT(Particle Transformer)と呼ばれるジェットタグのためのトランスフォーマーベースの新しいアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-02-08T10:36:29Z) - Shunted Self-Attention via Multi-Scale Token Aggregation [124.16925784748601]
最近のビジョン変換器(ViT)モデルは、様々なコンピュータビジョンタスクにまたがる励振結果を実証している。
注意層ごとのハイブリッドスケールでの注意をViTsでモデル化するShunted Self-attention(SSA)を提案する。
SSAベースの変換器は84.0%のTop-1精度を実現し、ImageNetの最先端のFocal Transformerより優れている。
論文 参考訳(メタデータ) (2021-11-30T08:08:47Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
近年、DeTRはトランスフォーマーを用いたソリューションビジョンタスクの先駆者であり、画像特徴マップを直接オブジェクト結果に変換する。
最近の変圧器を用いた画像認識モデルとTTは、一貫した効率向上を示す。
論文 参考訳(メタデータ) (2021-09-15T01:10:30Z) - TransMOT: Spatial-Temporal Graph Transformer for Multiple Object
Tracking [74.82415271960315]
映像内の物体間の空間的・時間的相互作用を効率的にモデル化するソリューションであるTransMOTを提案する。
TransMOTは従来のTransformerよりも計算効率が高いだけでなく、トラッキング精度も向上している。
提案手法は、MOT15、MOT16、MOT17、MOT20を含む複数のベンチマークデータセット上で評価される。
論文 参考訳(メタデータ) (2021-04-01T01:49:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。