Decentralized Reliability Estimation for Low Latency Mixnets
- URL: http://arxiv.org/abs/2406.06760v2
- Date: Tue, 03 Dec 2024 11:39:07 GMT
- Title: Decentralized Reliability Estimation for Low Latency Mixnets
- Authors: Claudia Diaz, Harry Halpin, Aggelos Kiayias,
- Abstract summary: mixnets can anonymously route large amounts of data packets with end to end latency that can be as low as a second.<n>Existing verifiability mechanisms are incompatible with scalable low-latency operation.<n>We propose a scheme that can estimate reliability scores for a mixnet's links and nodes in a decentralized manner.
- Score: 9.938777444906593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While there exist mixnets that can anonymously route large amounts of data packets with end to end latency that can be as low as a second, %making them attractive for a variety of applications, combining this level of performance with strong verifiability and reliability properties that ensure the correct processing and delivery of packets has proved challenging. Indeed, existing verifiability mechanisms are incompatible with scalable low-latency operation due to imposing significant latency overheads measuring in minutes to hours, hence severely limiting the variety of applications mixnets can serve. We address this important gap by proposing a scheme that can estimate reliability scores for a mixnet's links and nodes in a decentralized manner with essentially optimal complexity that is independent of the total traffic routed through the mixnet. The scores can be computed publicly by all participants from a set of measurement packets that are eventually revealed and act as a random sample of the traffic, without affecting mixnet transmission latency for client packets or incurring significant bandwidth overhead. Our scheme assumes client credentials and relies on VRF-based routing, a novel primitive that ensures that legitimate client packets follow the routing policy of the mixnet, as well as randomly generating unforgeable measurement packets. We experimentally validate our construction both in unreliable and adversarial settings, demonstrating its feasibility.
Related papers
- Distributed Training under Packet Loss [8.613477072763404]
Leveraging unreliable connections will reduce latency but may sacrifice model accuracy and convergence once packets are dropped.<n>We introduce a principled, end-to-end solution that preserves accuracy and convergence guarantees under genuine packet loss.<n>This work bridges the gap between communication-efficient protocols and the accuracy and guarantees demanded by modern large-model training.
arXiv Detail & Related papers (2025-07-02T11:07:20Z) - Towards Anonymous Neural Network Inference [0.0]
funion is a system providing end-to-end sender-receiver unlinkability for neural network inference.<n>Users can anonymously store input tensors in pseudorandom storage locations, commission compute services to process them via the neural network, and retrieve results with no traceable connection between input and output parties.
arXiv Detail & Related papers (2025-05-23T22:05:20Z) - Task-Oriented Feature Compression for Multimodal Understanding via Device-Edge Co-Inference [49.77734021302196]
We propose a task-oriented feature compression (TOFC) method for multimodal understanding in a device-edge co-inference framework.
To enhance compression efficiency, multiple entropy models are adaptively selected based on the characteristics of the visual features.
Results show that TOFC achieves up to 60% reduction in data transmission overhead and 50% reduction in system latency.
arXiv Detail & Related papers (2025-03-17T08:37:22Z) - Lightweight Federated Learning with Differential Privacy and Straggler Resilience [19.94124499453864]
Federated learning (FL) enables collaborative model training through model parameter exchanges instead of raw data.
To avoid potential inference attacks from exchanged parameters, differential privacy (DP) offers rigorous guarantee against various attacks.
We propose LightDP-FL, a novel lightweight scheme that ensures provable DP against untrusted peers and server.
arXiv Detail & Related papers (2024-12-09T00:54:00Z) - Privacy Preserving Semi-Decentralized Mean Estimation over Intermittently-Connected Networks [59.43433767253956]
We consider the problem of privately estimating the mean of vectors distributed across different nodes of an unreliable wireless network.
In a semi-decentralized setup, nodes can collaborate with their neighbors to compute a local consensus, which they relay to a central server.
We study the tradeoff between collaborative relaying and privacy leakage due to the data sharing among nodes.
arXiv Detail & Related papers (2024-06-06T06:12:15Z) - DASA: Delay-Adaptive Multi-Agent Stochastic Approximation [64.32538247395627]
We consider a setting in which $N$ agents aim to speedup a common Approximation problem by acting in parallel and communicating with a central server.
To mitigate the effect of delays and stragglers, we propose textttDASA, a Delay-Adaptive algorithm for multi-agent Approximation.
arXiv Detail & Related papers (2024-03-25T22:49:56Z) - Chu-ko-nu: A Reliable, Efficient, and Anonymously Authentication-Enabled Realization for Multi-Round Secure Aggregation in Federated Learning [13.64339376830805]
We propose a more reliable and anonymously authenticated scheme called Chu-ko-nu for secure aggregation.
Chu-ko-nu breaks the probability P barrier by supplementing a redistribution process of secret key components.
It can support clients anonymously participating in FL training and enables the server to authenticate clients effectively in the presence of attacks.
arXiv Detail & Related papers (2024-02-23T05:50:43Z) - Risk-Aware Accelerated Wireless Federated Learning with Heterogeneous
Clients [21.104752782245257]
Wireless Federated Learning (FL) is an emerging distributed machine learning paradigm.
This paper proposes a novel risk-aware accelerated FL framework that accounts for the clients heterogeneity in the amount of possessed data.
The proposed scheme is benchmarked against a conservative scheme (i.e., only allowing trustworthy devices) and an aggressive scheme (i.e. oblivious to the trust metric)
arXiv Detail & Related papers (2024-01-17T15:15:52Z) - Guaranteed Dynamic Scheduling of Ultra-Reliable Low-Latency Traffic via
Conformal Prediction [72.59079526765487]
The dynamic scheduling of ultra-reliable and low-latency traffic (URLLC) in the uplink can significantly enhance the efficiency of coexisting services.
The main challenge is posed by the uncertainty in the process of URLLC packet generation.
We introduce a novel scheduler for URLLC packets that provides formal guarantees on reliability and latency irrespective of the quality of the URLLC traffic predictor.
arXiv Detail & Related papers (2023-02-15T14:09:55Z) - Robust Control for Dynamical Systems With Non-Gaussian Noise via Formal
Abstractions [59.605246463200736]
We present a novel controller synthesis method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous control system into a finite-state model that captures noise by probabilistic transitions between discrete states.
We use state-of-the-art verification techniques to provide guarantees on the interval Markov decision process and compute a controller for which these guarantees carry over to the original control system.
arXiv Detail & Related papers (2023-01-04T10:40:30Z) - ScionFL: Efficient and Robust Secure Quantized Aggregation [36.668162197302365]
We introduce ScionFL, the first secure aggregation framework for federated learning.
It operates efficiently on quantized inputs and simultaneously provides robustness against malicious clients.
We show that with no overhead for clients and moderate overhead for the server, we obtain comparable accuracy for standard FL benchmarks.
arXiv Detail & Related papers (2022-10-13T21:46:55Z) - Sampling-Based Robust Control of Autonomous Systems with Non-Gaussian
Noise [59.47042225257565]
We present a novel planning method that does not rely on any explicit representation of the noise distributions.
First, we abstract the continuous system into a discrete-state model that captures noise by probabilistic transitions between states.
We capture these bounds in the transition probability intervals of a so-called interval Markov decision process (iMDP)
arXiv Detail & Related papers (2021-10-25T06:18:55Z) - Fast Federated Edge Learning with Overlapped Communication and
Computation and Channel-Aware Fair Client Scheduling [2.294014185517203]
We consider federated edge learning (FEEL) over wireless fading channels taking into account the downlink and uplink channel latencies.
We propose two alternative schemes with fairness considerations, termed as age-aware MRTP (A-MRTP), and opportunistically fair MRTP (OF-MRTP)
It is shown through numerical simulations that OF-MRTP provides significant reduction in latency without sacrificing test accuracy.
arXiv Detail & Related papers (2021-09-14T14:16:01Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z) - Quantized Federated Learning under Transmission Delay and Outage
Constraints [30.892724364965005]
Federated learning is a viable distributed learning paradigm which trains a machine learning model collaboratively with massive mobile devices in the wireless edge.
In practical systems with limited radio resources, transmission of a large number of model parameters inevitably suffers from quantization errors (QE) and transmission outage (TO)
We propose a robust FL scheme, named FedTOE, which performs joint allocation of wireless resources and quantization bits across the clients to minimize the QE while making the clients have the same TO probability.
arXiv Detail & Related papers (2021-06-17T11:29:12Z) - FastSecAgg: Scalable Secure Aggregation for Privacy-Preserving Federated
Learning [18.237186837994585]
A'secure aggregation' protocol enables the server to aggregate clients' models in a privacy-preserving manner.
FastSecAgg is efficient in terms of computation and communication, and robust to client dropouts.
arXiv Detail & Related papers (2020-09-23T16:49:02Z) - Towards Streaming Perception [70.68520310095155]
We present an approach that coherently integrates latency and accuracy into a single metric for real-time online perception.
The key insight behind this metric is to jointly evaluate the output of the entire perception stack at every time instant.
We focus on the illustrative tasks of object detection and instance segmentation in urban video streams, and contribute a novel dataset with high-quality and temporally-dense annotations.
arXiv Detail & Related papers (2020-05-21T01:51:35Z) - Toward fast and accurate human pose estimation via soft-gated skip
connections [97.06882200076096]
This paper is on highly accurate and highly efficient human pose estimation.
We re-analyze this design choice in the context of improving both the accuracy and the efficiency over the state-of-the-art.
Our model achieves state-of-the-art results on the MPII and LSP datasets.
arXiv Detail & Related papers (2020-02-25T18:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.