SeeFar: Satellite Agnostic Multi-Resolution Dataset for Geospatial Foundation Models
- URL: http://arxiv.org/abs/2406.06776v1
- Date: Mon, 10 Jun 2024 20:24:14 GMT
- Title: SeeFar: Satellite Agnostic Multi-Resolution Dataset for Geospatial Foundation Models
- Authors: James Lowman, Kelly Liu Zheng, Roydon Fraser, Jesse Van Griensven The, Mojtaba Valipour,
- Abstract summary: SeeFar is an evolving collection of multi-resolution satellite images from public and commercial satellites.
We curated this dataset for training geospatial foundation models, unconstrained by satellite type.
- Score: 0.0873811641236639
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: SeeFar is an evolving collection of multi-resolution satellite images from public and commercial satellites. We specifically curated this dataset for training geospatial foundation models, unconstrained by satellite type. In recent years, advances in technology have made satellite imagery more accessible than ever. More earth-observing satellites have been launched in the last five years than in the previous fifty. Modern commercial satellites now offer up to 100 times the spatial resolution of public access satellites. However, the high cost and limited historical availability of commercial satellite imagery is a barrier to the training of foundational models, impacting what images can be used during inference. The SeeFar dataset represents a step towards training models that are satellite-agnostic by combining multi-resolution commercial and public access pre-processed images. This will enable users to utilize historical data alongside higher-resolution, more expensive satellite imagery, offering greater flexibility during inference. To achieve this, we describe a process for standardizing data from diverse satellite sources, normalizing different data formats, and aligning spectral bands to enhance interoperability. The SeeFar dataset includes images at a resolution of 384x384 pixels, spanning four spectral bands (Blue, Green, Red, and Near-Infrared) and expanding spatial resolutions (starting with 30, 10, 1.5, and 1.0 meters), all in cloud-optimized GeoTIFF format. It also provides consistent and comprehensive metadata to enhance data transparency and reliability. By aggregating data from multiple sources, SeeFar makes processed and consistent satellite data accessible to a wider range of users - from researchers to policymakers - fostering competition and innovation in satellite imagery analysis. The dataset is available at \url{coastalcarbon.ai/seefar}.
Related papers
- SatDiffMoE: A Mixture of Estimation Method for Satellite Image Super-resolution with Latent Diffusion Models [3.839322642354617]
We propose a novel diffusion-based fusion algorithm called textbfSatDiffMoE.
Our algorithm is highly flexible and allows training and inference on arbitrary number of low-resolution images.
Experimental results show that our proposed SatDiffMoE method achieves superior performance for the satellite image super-resolution tasks.
arXiv Detail & Related papers (2024-06-14T17:58:28Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
We explore the potential of generative image diffusion to address the scarcity of annotated data in earth observation tasks.
To the best of our knowledge, we are the first to generate both images and corresponding masks for satellite segmentation.
arXiv Detail & Related papers (2024-03-25T10:30:22Z) - Vehicle Perception from Satellite [54.07157185000604]
The dataset is constructed based on 12 satellite videos and 14 synthetic videos recorded from GTA-V.
It supports several tasks, including tiny object detection, counting and density estimation.
128,801 vehicles are annotated totally, and the number of vehicles in each image varies from 0 to 101.
arXiv Detail & Related papers (2024-02-01T15:59:16Z) - Multiview Aerial Visual Recognition (MAVREC): Can Multi-view Improve
Aerial Visual Perception? [57.77643186237265]
We present Multiview Aerial Visual RECognition or MAVREC, a video dataset where we record synchronized scenes from different perspectives.
MAVREC consists of around 2.5 hours of industry-standard 2.7K resolution video sequences, more than 0.5 million frames, and 1.1 million annotated bounding boxes.
This makes MAVREC the largest ground and aerial-view dataset, and the fourth largest among all drone-based datasets.
arXiv Detail & Related papers (2023-12-07T18:59:14Z) - DiffusionSat: A Generative Foundation Model for Satellite Imagery [63.2807119794691]
We present DiffusionSat, to date the largest generative foundation model trained on a collection of publicly available large, high-resolution remote sensing datasets.
Our method produces realistic samples and can be used to solve multiple generative tasks including temporal generation, superresolution given multi-spectral inputs and in-painting.
arXiv Detail & Related papers (2023-12-06T16:53:17Z) - Semantic Segmentation of Vegetation in Remote Sensing Imagery Using Deep
Learning [77.34726150561087]
We propose an approach for creating a multi-modal and large-temporal dataset comprised of publicly available Remote Sensing data.
We use Convolutional Neural Networks (CNN) models that are capable of separating different classes of vegetation.
arXiv Detail & Related papers (2022-09-28T18:51:59Z) - Towards Space-to-Ground Data Availability for Agriculture Monitoring [0.0]
We present a space-to-ground dataset that contains Sentinel-1 radar and Sentinel-2 optical image time-series, as well as street-level images from the crowdsourcing platform Mapillary.
We train machine and deep learning algorithms on these different data domains and highlight the potential of fusion techniques towards increasing the reliability of decisions.
arXiv Detail & Related papers (2022-05-16T14:35:48Z) - Satellite Image Time Series Analysis for Big Earth Observation Data [50.591267188664666]
This paper describes sits, an open-source R package for satellite image time series analysis using machine learning.
We show that this approach produces high accuracy for land use and land cover maps through a case study in the Cerrado biome.
arXiv Detail & Related papers (2022-04-24T15:23:25Z) - Manipulating UAV Imagery for Satellite Model Training, Calibration and
Testing [4.514832807541816]
Modern livestock farming is increasingly data driven and relies on efficient remote sensing to gather data over wide areas.
Satellite imagery is one such data source, which is becoming more accessible for farmers as coverage increases and cost falls.
We present a new multi-temporal dataset of high resolution UAV imagery which is artificially degraded to match satellite data quality.
arXiv Detail & Related papers (2022-03-22T03:57:02Z) - Edge Detection for Satellite Images without Deep Networks [2.741266294612776]
Recent approaches to satellite image analysis have largely emphasized deep learning methods.
Deep learning has some drawbacks, including the requirement of specialized computing hardware.
The cost of both computational resources and training data annotation may be prohibitive when dealing with large satellite datasets.
arXiv Detail & Related papers (2021-05-26T15:47:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.