論文の概要: Locally Interdependent Multi-Agent MDP: Theoretical Framework for Decentralized Agents with Dynamic Dependencies
- arxiv url: http://arxiv.org/abs/2406.06823v1
- Date: Mon, 10 Jun 2024 22:11:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 19:56:14.438662
- Title: Locally Interdependent Multi-Agent MDP: Theoretical Framework for Decentralized Agents with Dynamic Dependencies
- Title(参考訳): 局所的相互依存型マルチエージェントMDP:動的依存を持つ分散エージェントの理論フレームワーク
- Authors: Alex DeWeese, Guannan Qu,
- Abstract要約: 局所的相互依存型マルチエージェントMDPと呼ばれる動的に異なる依存関係を持つ分散モデルの解析を行う。
一般に部分的に観察可能なマルチエージェントシステムの難しさにもかかわらず、3つのクローズドフォームポリシーを提案する。
- 参考スコア(独自算出の注目度): 6.015898117103069
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many multi-agent systems in practice are decentralized and have dynamically varying dependencies. There has been a lack of attempts in the literature to analyze these systems theoretically. In this paper, we propose and theoretically analyze a decentralized model with dynamically varying dependencies called the Locally Interdependent Multi-Agent MDP. This model can represent problems in many disparate domains such as cooperative navigation, obstacle avoidance, and formation control. Despite the intractability that general partially observable multi-agent systems suffer from, we propose three closed-form policies that are theoretically near-optimal in this setting and can be scalable to compute and store. Consequentially, we reveal a fundamental property of Locally Interdependent Multi-Agent MDP's that the partially observable decentralized solution is exponentially close to the fully observable solution with respect to the visibility radius. We then discuss extensions of our closed-form policies to further improve tractability. We conclude by providing simulations to investigate some long horizon behaviors of our closed-form policies.
- Abstract(参考訳): 実際には、多くのマルチエージェントシステムは分散化されており、動的に依存する。
これらのシステムを理論的に分析するための文献が不足している。
本稿では,局所的相互依存型マルチエージェントMDPと呼ばれる動的に変化する依存関係を持つ分散モデルを提案し,理論的に解析する。
このモデルは、協調ナビゲーション、障害物回避、生成制御など、多くの異なる領域における問題を表現することができる。
一般に部分的に観測可能なマルチエージェントシステムの難しさにも拘わらず、理論的に最適に近い3つのクローズドフォームポリシーを提案し、計算・保存にスケーラブルである。
その結果, 部分観測可能な分散解が可視半径に関して完全に観測可能な解に指数関数的に近いという, 局所的相互依存型マルチエージェント MDP の基本的性質を明らかにした。
次に、トラクタビリティをさらに向上するために、クローズドフォームポリシーの拡張について議論する。
クローズドフォームポリシーの長い地平線挙動を調べるためのシミュレーションを提供することで、結論付ける。
関連論文リスト
- An Analysis of Multi-Agent Reinforcement Learning for Decentralized
Inventory Control Systems [0.0]
在庫管理問題に対するほとんどのソリューションは、実際のサプライチェーンネットワークにおける組織的制約とは相容れない情報の集中化を前提としている。
本稿では,多エージェント強化学習を用いた在庫管理問題に対する分散データ駆動型ソリューションを提案する。
以上の結果から,マルチエージェントに近いポリシー最適化を中央集権的批判と組み合わせることで,中央集権的なデータ駆動型ソリューションに近い性能が得られることが示唆された。
論文 参考訳(メタデータ) (2023-07-21T08:52:08Z) - Learning Decentralized Partially Observable Mean Field Control for
Artificial Collective Behavior [28.313779052437134]
分散部分観測可能なMFC(Dec-POMFC)の新しいモデルを提案する。
動的プログラミング原理を含む厳密な理論結果を提供する。
全体として、我々のフレームワークは、MFCによる人工集合行動のRLに基づく工学への一歩を踏み出した。
論文 参考訳(メタデータ) (2023-07-12T14:02:03Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TPはインクリメンタルピアソン相関係数に基づく新しい関連認識モジュールであり,マルチエージェントインタラクションモデリングを改善する。
我々のモジュールは、既存のマルチエージェント予測手法に便利に組み込んで、元の動き分布デコーダを拡張することができる。
論文 参考訳(メタデータ) (2023-03-01T15:16:56Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z) - The Gradient Convergence Bound of Federated Multi-Agent Reinforcement
Learning with Efficient Communication [20.891460617583302]
連立学習パラダイムにおける協調的意思決定のための独立強化学習(IRL)の検討
FLはエージェントとリモート中央サーバ間の過剰な通信オーバーヘッドを生成する。
本稿では,システムの実用性向上のための2つの高度な最適化手法を提案する。
論文 参考訳(メタデータ) (2021-03-24T07:21:43Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
本稿では,モンテカルロ木探索に基づくトレーニング可能なオンライン分散計画アルゴリズムを提案する。
深層学習と畳み込みニューラルネットワークを用いて正確なポリシー近似を作成可能であることを示す。
論文 参考訳(メタデータ) (2020-03-19T13:10:20Z) - Invariant Causal Prediction for Block MDPs [106.63346115341862]
環境全体にわたる一般化は、実世界の課題への強化学習アルゴリズムの適用の成功に不可欠である。
本稿では,多環境環境における新しい観測を一般化するモデル不適合状態抽象化(MISA)を学習するための不変予測法を提案する。
論文 参考訳(メタデータ) (2020-03-12T21:03:01Z) - Multi-Agent Interactions Modeling with Correlated Policies [53.38338964628494]
本稿では,マルチエージェントインタラクションモデリング問題をマルチエージェント模倣学習フレームワークに実装する。
相関ポリシー(CoDAIL)を用いた分散型適応模倣学習アルゴリズムの開発
様々な実験により、CoDAILはデモレーターに近い複雑な相互作用をより良く再生できることが示されている。
論文 参考訳(メタデータ) (2020-01-04T17:31:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。