Large language models for generating rules, yay or nay?
- URL: http://arxiv.org/abs/2406.06835v1
- Date: Mon, 10 Jun 2024 22:44:25 GMT
- Title: Large language models for generating rules, yay or nay?
- Authors: Shangeetha Sivasothy, Scott Barnett, Rena Logothetis, Mohamed Abdelrazek, Zafaryab Rasool, Srikanth Thudumu, Zac Brannelly,
- Abstract summary: We present a novel approach that leverages Large Language Models (LLMs) as a potential world model to accelerate the engineering of software systems.
This approach involves using LLMs to generate logic rules, which can then be reviewed and informed by SMEs before deployment.
Our experiments show that 1) LLMs have a world model that bootstraps implementation, 2) LLMs generated less number of rules compared to experts, and 3) LLMs do not have the capacity to generate thresholds for each rule.
- Score: 1.773865951534232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Engineering safety-critical systems such as medical devices and digital health intervention systems is complex, where long-term engagement with subject-matter experts (SMEs) is needed to capture the systems' expected behaviour. In this paper, we present a novel approach that leverages Large Language Models (LLMs), such as GPT-3.5 and GPT-4, as a potential world model to accelerate the engineering of software systems. This approach involves using LLMs to generate logic rules, which can then be reviewed and informed by SMEs before deployment. We evaluate our approach using a medical rule set, created from the pandemic intervention monitoring system in collaboration with medical professionals during COVID-19. Our experiments show that 1) LLMs have a world model that bootstraps implementation, 2) LLMs generated less number of rules compared to experts, and 3) LLMs do not have the capacity to generate thresholds for each rule. Our work shows how LLMs augment the requirements' elicitation process by providing access to a world model for domains.
Related papers
- Towards Trustworthy Machine Learning in Production: An Overview of the Robustness in MLOps Approach [0.0]
In recent years, AI researchers and practitioners have introduced principles and guidelines to build systems that make reliable and trustworthy decisions.
In practice, a fundamental challenge arises when the system needs to be operationalized and deployed to evolve and operate in real-life environments continuously.
To address this challenge, Machine Learning Operations (MLOps) have emerged as a potential recipe for standardizing ML solutions in deployment.
arXiv Detail & Related papers (2024-10-28T09:34:08Z) - WALL-E: World Alignment by Rule Learning Improves World Model-based LLM Agents [55.64361927346957]
We propose a neurosymbolic approach to learn rules gradient-free through large language models (LLMs)
Our embodied LLM agent "WALL-E" is built upon model-predictive control (MPC)
On open-world challenges in Minecraft and ALFWorld, WALL-E achieves higher success rates than existing methods.
arXiv Detail & Related papers (2024-10-09T23:37:36Z) - Efficient Prompting for LLM-based Generative Internet of Things [88.84327500311464]
Large language models (LLMs) have demonstrated remarkable capacities on various tasks, and integrating the capacities of LLMs into the Internet of Things (IoT) applications has drawn much research attention recently.
Due to security concerns, many institutions avoid accessing state-of-the-art commercial LLM services, requiring the deployment and utilization of open-source LLMs in a local network setting.
We propose a LLM-based Generative IoT (GIoT) system deployed in the local network setting in this study.
arXiv Detail & Related papers (2024-06-14T19:24:00Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
Large language model (LLM) empowered agents are able to solve decision-making problems in the physical world.
Under this model, the LLM Planner navigates a partially observable Markov decision process (POMDP) by iteratively generating language-based subgoals via prompting.
We prove that the pretrained LLM Planner effectively performs Bayesian aggregated imitation learning (BAIL) through in-context learning.
arXiv Detail & Related papers (2024-05-30T09:42:54Z) - Empowering Large Language Models on Robotic Manipulation with Affordance Prompting [23.318449345424725]
Large language models fail to interact with the physical world by generating control sequences properly.
Existing LLM-based approaches circumvent this problem by relying on additional pre-defined skills or pre-trained sub-policies.
We propose a framework called LLM+A(ffordance) where the LLM serves as both the sub-task planner and the motion controller.
arXiv Detail & Related papers (2024-04-17T03:06:32Z) - Using Large Language Models to Understand Telecom Standards [35.343893798039765]
Large Language Models (LLMs) may provide faster access to relevant information.
We evaluate the capability of state-of-art LLMs to be used as Question Answering (QA) assistants.
Results show that LLMs can be used as a credible reference tool on telecom technical documents.
arXiv Detail & Related papers (2024-04-02T09:54:51Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Risk Taxonomy, Mitigation, and Assessment Benchmarks of Large Language
Model Systems [29.828997665535336]
Large language models (LLMs) have strong capabilities in solving diverse natural language processing tasks.
However, the safety and security issues of LLM systems have become the major obstacle to their widespread application.
This paper proposes a comprehensive taxonomy, which systematically analyzes potential risks associated with each module of an LLM system.
arXiv Detail & Related papers (2024-01-11T09:29:56Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
Uncertainty estimation (UE) methods are one path to safer, more responsible, and more effective use of large language models (LLMs)
We introduce LM-Polygraph, a framework with implementations of a battery of state-of-the-art UE methods for LLMs in text generation tasks, with unified program interfaces in Python.
It introduces an extendable benchmark for consistent evaluation of UE techniques by researchers, and a demo web application that enriches the standard chat dialog with confidence scores.
arXiv Detail & Related papers (2023-11-13T15:08:59Z) - Do Embodied Agents Dream of Pixelated Sheep: Embodied Decision Making
using Language Guided World Modelling [101.59430768507997]
Reinforcement learning (RL) agents typically learn tabula rasa, without prior knowledge of the world.
We propose using few-shot large language models (LLMs) to hypothesize an Abstract World Model (AWM)
Our method of hypothesizing an AWM with LLMs and then verifying the AWM based on agent experience not only increases sample efficiency over contemporary methods by an order of magnitude.
arXiv Detail & Related papers (2023-01-28T02:04:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.