論文の概要: FLUX: Fast Software-based Communication Overlap On GPUs Through Kernel Fusion
- arxiv url: http://arxiv.org/abs/2406.06858v1
- Date: Tue, 11 Jun 2024 00:17:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 19:46:28.862563
- Title: FLUX: Fast Software-based Communication Overlap On GPUs Through Kernel Fusion
- Title(参考訳): FLUX:カーネルフュージョンによるGPU上での高速ソフトウェアベースの通信オーバーラップ
- Authors: Liwen Chang, Wenlei Bao, Qi Hou, Chengquan Jiang, Ningxin Zheng, Xuanrun Zhang, Zuquan Song, Ziheng Jiang, Haibin Lin, Xin Liu,
- Abstract要約: 本稿では,GPUに依存する計算で通信遅延を著しく隠蔽する新しいFlux法を提案する。
Fluxは核融合によって最大96%の通信を重複させる可能性がある。
全体としては、様々なGPU世代と相互接続を持つ128GPUのクラスタ上で、Megatron-LM上でのトレーニングのために、最大1.24倍のスピードアップを達成することができる。
- 参考スコア(独自算出の注目度): 5.387199597337374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large deep learning models have demonstrated strong ability to solve many tasks across a wide range of applications. Those large models typically require training and inference to be distributed. Tensor parallelism is a common technique partitioning computation of an operation or layer across devices to overcome the memory capacity limitation of a single processor, and/or to accelerate computation to meet a certain latency requirement. However, this kind of parallelism introduces additional communication that might contribute a significant portion of overall runtime. Thus limits scalability of this technique within a group of devices with high speed interconnects, such as GPUs with NVLinks in a node. This paper proposes a novel method, Flux, to significantly hide communication latencies with dependent computations for GPUs. Flux over-decomposes communication and computation operations into much finer-grained operations and further fuses them into a larger kernel to effectively hide communication without compromising kernel efficiency. Flux can potentially overlap up to 96% of communication given a fused kernel. Overall, it can achieve up to 1.24x speedups for training over Megatron-LM on a cluster of 128 GPUs with various GPU generations and interconnects, and up to 1.66x and 1.30x speedups for prefill and decoding inference over vLLM on a cluster with 8 GPUs with various GPU generations and interconnects.
- Abstract(参考訳): 大規模なディープラーニングモデルは、広範囲のアプリケーションで多くのタスクを解く強力な能力を示している。
これらの大きなモデルは一般的に、トレーニングと推論を必要とします。
テンソル並列性(Tensor parallelism)は、単一のプロセッサのメモリ容量制限を克服し、/または特定のレイテンシ要求を満たすために計算を高速化するために、デバイス間で操作やレイヤの計算を分割する一般的な手法である。
しかし、この種の並列処理は、ランタイム全体のかなりの部分を占めるかもしれない追加の通信を導入します。
これにより、ノード内のNVLinkを持つGPUなど、高速な相互接続を持つデバイス群における、このテクニックのスケーラビリティが制限される。
本稿では,GPUに依存する計算で通信遅延を著しく隠蔽する新しいFlux法を提案する。
Fluxは通信処理と計算処理を細かな演算に過度に分解し、さらに大きなカーネルに融合させ、カーネル効率を損なうことなく効果的に通信を隠蔽する。
Fluxは核融合によって最大96%の通信を重複させる可能性がある。
全体として、様々なGPU世代と相互接続を持つ128GPUのクラスタ上で、Megatron-LMをトレーニングするための最大1.24倍のスピードアップを実現し、様々なGPU世代と相互接続を持つ8GPUを持つクラスタ上で、vLLM上の推論をプリフィルおよびデコードするための最大1.66倍と1.30倍のスピードアップを実現している。
関連論文リスト
- vTensor: Flexible Virtual Tensor Management for Efficient LLM Serving [53.972175896814505]
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
大規模言語モデル(LLM)は様々なドメインで広く使われ、数百万の日次要求を処理する。
論文 参考訳(メタデータ) (2024-07-22T14:37:58Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - SPEED: Streaming Partition and Parallel Acceleration for Temporal
Interaction Graph Embedding [22.68416593780539]
本稿では,時間的相互作用グラフ埋め込みのためのストリームエッジ分割と並列高速化という,新たなトレーニング手法を提案する。
提案手法は,計算資源,計算時間,下流タスク性能のバランスが良好である。
7つの実世界のデータセットにまたがる実証的な検証は、トレーニング速度を最大19.29倍に向上させる可能性を実証している。
論文 参考訳(メタデータ) (2023-08-27T15:11:44Z) - DistTGL: Distributed Memory-Based Temporal Graph Neural Network Training [18.52206409432894]
DistTGLは、分散GPUクラスタ上でメモリベースのTGNNをトレーニングするための、効率的でスケーラブルなソリューションである。
実験では、DistTGLはほぼ直線収束のスピードアップを実現し、最先端のシングルマシン法を14.5%、トレーニングスループットは10.17倍に向上した。
論文 参考訳(メタデータ) (2023-07-14T22:52:27Z) - FlexGen: High-Throughput Generative Inference of Large Language Models
with a Single GPU [89.2451963569343]
FlexGenは、単一のコモディティGPU上で大きな言語モデル(LLM)推論を実行するための世代エンジンである。
1つの16GB GPU上でOPT-175Bを実行する場合、FlexGenは最先端のオフロードシステムに比べてスループットが大幅に向上する。
HELMベンチマークでは、FlexGenは7つの代表サブシナリオに16GBのGPUで30Bモデルを21時間でベンチマークすることができる。
論文 参考訳(メタデータ) (2023-03-13T05:19:28Z) - Collaborative Learning over Wireless Networks: An Introductory Overview [84.09366153693361]
主に、ワイヤレスデバイス間の協調トレーニングに焦点を合わせます。
過去数十年間、多くの分散最適化アルゴリズムが開発されてきた。
データ局所性 – すなわち、各参加デバイスで利用可能なデータがローカルのままである間、共同モデルを協調的にトレーニングすることができる。
論文 参考訳(メタデータ) (2021-12-07T20:15:39Z) - AxoNN: An asynchronous, message-driven parallel framework for
extreme-scale deep learning [1.5301777464637454]
AxoNNは並列ディープラーニングフレームワークで、非同期とメッセージ駆動の実行を利用して、各GPU上でのニューラルネットワーク操作をスケジュールする。
トレーニング中に定期的にデータをオフロードするスクラッチスペースとしてCPUメモリを使用することで、AxoNNはGPUメモリ使用量を4倍削減することができる。
論文 参考訳(メタデータ) (2021-10-25T14:43:36Z) - Efficient and Generic 1D Dilated Convolution Layer for Deep Learning [52.899995651639436]
幅広いパラメータをカバーする汎用的な1D畳み込み層の効率的な実装を紹介します。
特にIntel AVX-512とAVX-512 BFloat16命令を含むアーキテクチャ向けに最適化されている。
本稿では,最適化された1次元畳み込み層の性能を,実際のゲノミクスデータセットを用いたエンドツーエンドニューラルネットワークトレーニングで実証する。
論文 参考訳(メタデータ) (2021-04-16T09:54:30Z) - DistGNN: Scalable Distributed Training for Large-Scale Graph Neural
Networks [58.48833325238537]
大規模グラフの構造を学ぶためにGNN(Graph Neural Networks)のフルバッチトレーニングは、実現可能な数百の計算ノードにスケールする必要がある重要な問題です。
本稿では,CPUクラスタ上でのフルバッチトレーニングのためのDGL(Deep Graph Library)を最適化したGNNについて述べる。
4つの一般的なGNNベンチマークデータセットの結果は、1つのCPUソケットを使用して最大3.7倍のスピードアップ、128のCPUソケットを使用して最大97倍のスピードアップを示す。
論文 参考訳(メタデータ) (2021-04-14T08:46:35Z) - Large Graph Convolutional Network Training with GPU-Oriented Data
Communication Architecture [19.2129567657739]
グラフ畳み込みネットワーク(gcns)は大規模グラフベースのレコメンデーションシステムでますます採用されている。
現在のGCNトレーニングシステムは、フィーチャーテーブルをホストメモリに保持し、スパース機能の収集にCPUに依存している。
しかしこのアプローチは、ホストメモリの帯域幅とCPUに大きなプレッシャーを与えます。
本稿では,GPUスレッドがホストメモリのスパース機能に直接アクセスするGCNトレーニングのための新しいGPU指向データ通信手法を提案する。
論文 参考訳(メタデータ) (2021-03-04T21:00:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。