Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment
- URL: http://arxiv.org/abs/2406.06874v3
- Date: Fri, 29 Nov 2024 23:41:57 GMT
- Title: Learning Reward and Policy Jointly from Demonstration and Preference Improves Alignment
- Authors: Chenliang Li, Siliang Zeng, Zeyi Liao, Jiaxiang Li, Dongyeop Kang, Alfredo Garcia, Mingyi Hong,
- Abstract summary: We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF) to train reward models and the policy.
The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms.
We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo.
- Score: 58.049113055986375
- License:
- Abstract: Aligning human preference and value is an important requirement for building contemporary foundation models and embodied AI. However, popular approaches such as reinforcement learning with human feedback (RLHF) break down the task into successive stages, such as supervised fine-tuning (SFT), reward modeling (RM), and reinforcement learning (RL), each performing one specific learning task. Such a sequential approach results in serious issues such as significant under-utilization of data and distribution mismatch between the learned reward model and generated policy, which eventually lead to poor alignment performance. We develop a single stage approach named Alignment with Integrated Human Feedback (AIHF), capable of integrating both human preference and demonstration to train reward models and the policy. The proposed approach admits a suite of efficient algorithms, which can easily reduce to, and leverage, popular alignment algorithms such as RLHF and Directly Policy Optimization (DPO), and only requires minor changes to the existing alignment pipelines. We demonstrate the efficiency of the proposed solutions with extensive experiments involving alignment problems in LLMs and robotic control problems in MuJoCo. We observe that the proposed solutions outperform the existing alignment algorithms such as RLHF and DPO by large margins, especially when the amount of high-quality preference data is relatively limited.
Related papers
- On-the-fly Preference Alignment via Principle-Guided Decoding [27.50204023448716]
We introduce On-the-fly Preference Alignment via Principle-Guided Decoding (OPAD) to align model outputs with human preferences during inference.
OPAD achieves competitive or superior performance in both general and personalized alignment tasks.
arXiv Detail & Related papers (2025-02-20T02:23:09Z) - Simplify RLHF as Reward-Weighted SFT: A Variational Method [34.222095430239555]
Reinforcement Learning from Human Feedback (RLHF) is crucial for aligning Large Language Models (LLMs) with human values.
We propose a novel simplification of RLHF from the perspective of variational inference.
We transform the alignment objective into a reward-driven supervised fine-tuning form to obtain noticeable improvement on training stability and effectiveness.
arXiv Detail & Related papers (2025-02-16T07:22:00Z) - Improving Multi-Step Reasoning Abilities of Large Language Models with Direct Advantage Policy Optimization [22.67700436936984]
We introduce Direct Advantage Policy Optimization (DAPO), a novel step-level offline reinforcement learning algorithm.
DAPO employs a critic function to predict the reasoning accuracy at each step, thereby generating dense signals to refine the generation strategy.
Our results show that DAPO can effectively enhance the mathematical and code capabilities on both SFT models and RL models, demonstrating the effectiveness of DAPO.
arXiv Detail & Related papers (2024-12-24T08:39:35Z) - SAIL: Self-Improving Efficient Online Alignment of Large Language Models [56.59644677997827]
Reinforcement Learning from Human Feedback is a key method for aligning large language models with human preferences.
Recent literature has focused on designing online RLHF methods but still lacks a unified conceptual formulation.
Our approach significantly improves alignment performance on open-sourced datasets with minimal computational overhead.
arXiv Detail & Related papers (2024-06-21T18:05:35Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - LIRE: listwise reward enhancement for preference alignment [27.50204023448716]
We propose a gradient-based reward optimization approach that incorporates the offline rewards of multiple responses into a streamlined listwise framework.
LIRE is straightforward to implement, requiring minimal parameter tuning, and seamlessly aligns with the pairwise paradigm.
Our experiments demonstrate that LIRE consistently outperforms existing methods across several benchmarks on dialogue and summarization tasks.
arXiv Detail & Related papers (2024-05-22T10:21:50Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - PARL: A Unified Framework for Policy Alignment in Reinforcement Learning from Human Feedback [106.63518036538163]
We present a novel unified bilevel optimization-based framework, textsfPARL, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning.
Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable.
Our empirical results substantiate that the proposed textsfPARL can address the alignment concerns in RL by showing significant improvements.
arXiv Detail & Related papers (2023-08-03T18:03:44Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.