Synthetic Face Ageing: Evaluation, Analysis and Facilitation of Age-Robust Facial Recognition Algorithms
- URL: http://arxiv.org/abs/2406.06932v1
- Date: Mon, 10 Jun 2024 14:27:36 GMT
- Title: Synthetic Face Ageing: Evaluation, Analysis and Facilitation of Age-Robust Facial Recognition Algorithms
- Authors: Wang Yao, Muhammad Ali Farooq, Joseph Lemley, Peter Corcoran,
- Abstract summary: We explore the feasibility of utilizing synthetic ageing data to improve the robustness of face recognition models.
We show that the recognition rate of the model trained on synthetic ageing images is 3.33% higher than the results of the baseline model when tested on images with an age gap of 40 years.
- Score: 1.0499611180329804
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to accurately recognize an individual's face with respect to human aging factor holds significant importance for various private as well as government sectors such as customs and public security bureaus, passport office, and national database systems. Therefore, developing a robust age-invariant face recognition system is of crucial importance to address the challenges posed by ageing and maintain the reliability and accuracy of facial recognition technology. In this research work, the focus is to explore the feasibility of utilizing synthetic ageing data to improve the robustness of face recognition models that can eventually help in recognizing people at broader age intervals. To achieve this, we first design set of experiments to evaluate state-of-the-art synthetic ageing methods. In the next stage we explore the effect of age intervals on a current deep learning-based face recognition algorithm by using synthetic ageing data as well as real ageing data to perform rigorous training and validation. Moreover, these synthetic age data have been used in facilitating face recognition algorithms. Experimental results show that the recognition rate of the model trained on synthetic ageing images is 3.33% higher than the results of the baseline model when tested on images with an age gap of 40 years, which prove the potential of synthetic age data which has been quantified to enhance the performance of age-invariant face recognition systems.
Related papers
- Second Edition FRCSyn Challenge at CVPR 2024: Face Recognition Challenge in the Era of Synthetic Data [104.45155847778584]
This paper presents an overview of the 2nd edition of the Face Recognition Challenge in the Era of Synthetic Data (FRCSyn)
FRCSyn aims to investigate the use of synthetic data in face recognition to address current technological limitations.
arXiv Detail & Related papers (2024-04-16T08:15:10Z) - SDFR: Synthetic Data for Face Recognition Competition [51.9134406629509]
Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns.
Recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets.
This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024)
The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones.
arXiv Detail & Related papers (2024-04-06T10:30:31Z) - IDiff-Face: Synthetic-based Face Recognition through Fizzy
Identity-Conditioned Diffusion Models [15.217324893166579]
Synthetic datasets have emerged as a promising alternative to privacy-sensitive authentic data for face recognition development.
IDiff-Face is a novel approach based on conditional latent diffusion models for synthetic identity generation with realistic identity variations for face recognition training.
arXiv Detail & Related papers (2023-08-09T14:48:31Z) - Will your Doorbell Camera still recognize you as you grow old [1.6536018920603175]
This work explores the effect of age and aging on the performance of facial authentication methods.
A photo-realistic age transformation method has been employed to augment a set of high-quality facial images with various age effects.
The effect of these synthetic aging data on the high-performance deep-learning-based face recognition model is quantified.
arXiv Detail & Related papers (2023-08-08T12:43:26Z) - Synthetic Data for Face Recognition: Current State and Future Prospects [14.288753326973984]
This work aims at providing a clear and structured picture of the use-cases of synthetic face data in face recognition.
We discuss the challenges facing the use of synthetic data in face recognition development and several future prospects of synthetic data in the domain of face recognition.
arXiv Detail & Related papers (2023-05-01T18:25:22Z) - Time flies by: Analyzing the Impact of Face Ageing on the Recognition
Performance with Synthetic Data [18.47822752527376]
This work studies the impact of ageing on the performance of an open-source biometric recognition system.
The main findings indicate that short-term ageing in the range of 1-5 years has only minor effects on the general recognition performance.
arXiv Detail & Related papers (2022-08-17T10:28:27Z) - LAE : Long-tailed Age Estimation [52.5745217752147]
We first formulate a simple standard baseline and build a much strong one by collecting the tricks in pre-training, data augmentation, model architecture, and so on.
Compared with the standard baseline, the proposed one significantly decreases the estimation errors.
We propose a two-stage training method named Long-tailed Age Estimation (LAE), which decouples the learning procedure into representation learning and classification.
arXiv Detail & Related papers (2021-10-25T09:05:44Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
We devise the SynFace with identity mixup (IM) and domain mixup (DM) to mitigate the performance gap.
We also perform a systematically empirical analysis on synthetic face images to provide some insights on how to effectively utilize synthetic data for face recognition.
arXiv Detail & Related papers (2021-08-18T03:41:54Z) - FP-Age: Leveraging Face Parsing Attention for Facial Age Estimation in
the Wild [50.8865921538953]
We propose a method to explicitly incorporate facial semantics into age estimation.
We design a face parsing-based network to learn semantic information at different scales.
We show that our method consistently outperforms all existing age estimation methods.
arXiv Detail & Related papers (2021-06-21T14:31:32Z) - Continuous Face Aging via Self-estimated Residual Age Embedding [8.443742714362521]
We propose a unified network structure that embeds a linear age estimator into a GAN-based model.
The embedded age estimator is trained jointly with the encoder and decoder to estimate the age of a face image.
The personalized target age embedding is synthesized by incorporating both personalized residual age embedding of the current age and exemplar-face aging basis of the target age.
arXiv Detail & Related papers (2021-04-30T18:06:17Z) - Age Gap Reducer-GAN for Recognizing Age-Separated Faces [72.26969872180841]
We propose a novel algorithm for matching faces with temporal variations caused due to age progression.
The proposed generative adversarial network algorithm is a unified framework that combines facial age estimation and age-separated face verification.
arXiv Detail & Related papers (2020-11-11T16:43:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.