Triple-domain Feature Learning with Frequency-aware Memory Enhancement for Moving Infrared Small Target Detection
- URL: http://arxiv.org/abs/2406.06949v2
- Date: Thu, 5 Sep 2024 14:16:31 GMT
- Title: Triple-domain Feature Learning with Frequency-aware Memory Enhancement for Moving Infrared Small Target Detection
- Authors: Weiwei Duan, Luping Ji, Shengjia Chen, Sicheng Zhu, Mao Ye,
- Abstract summary: Infrared small target detection presents significant challenges due to target sizes and low contrast against backgrounds.
We propose a new Triple-domain Strategy (Tridos) with frequency-aware memory enhancement on-temporal domain for infrared small target detection.
Inspired by human visual system, our memory enhancement is designed to capture the spatial relations of infrared targets among video frames.
- Score: 12.641645684148136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As a sub-field of object detection, moving infrared small target detection presents significant challenges due to tiny target sizes and low contrast against backgrounds. Currently-existing methods primarily rely on the features extracted only from spatio-temporal domain. Frequency domain has hardly been concerned yet, although it has been widely applied in image processing. To extend feature source domains and enhance feature representation, we propose a new Triple-domain Strategy (Tridos) with the frequency-aware memory enhancement on spatio-temporal domain for infrared small target detection. In this scheme, it effectively detaches and enhances frequency features by a local-global frequency-aware module with Fourier transform. Inspired by human visual system, our memory enhancement is designed to capture the spatial relations of infrared targets among video frames. Furthermore, it encodes temporal dynamics motion features via differential learning and residual enhancing. Additionally, we further design a residual compensation to reconcile possible cross-domain feature mismatches. To our best knowledge, proposed Tridos is the first work to explore infrared target feature learning comprehensively in spatio-temporal-frequency domains. The extensive experiments on three datasets (i.e., DAUB, ITSDT-15K and IRDST) validate that our triple-domain infrared feature learning scheme could often be obviously superior to state-of-the-art ones. Source codes are available at https://github.com/UESTC-nnLab/Tridos.
Related papers
- Frequency-Spatial Entanglement Learning for Camouflaged Object Detection [34.426297468968485]
Existing methods attempt to reduce the impact of pixel similarity by maximizing the distinguishing ability of spatial features with complicated design.
We propose a new approach to address this issue by jointly exploring the representation in the frequency and spatial domains, introducing the Frequency-Spatial Entanglement Learning (FSEL) method.
Our experiments demonstrate the superiority of our FSEL over 21 state-of-the-art methods, through comprehensive quantitative and qualitative comparisons in three widely-used datasets.
arXiv Detail & Related papers (2024-09-03T07:58:47Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - Frequency Domain Nuances Mining for Visible-Infrared Person
Re-identification [75.87443138635432]
Existing methods mainly exploit the spatial information while ignoring the discriminative frequency information.
We propose a novel Frequency Domain Nuances Mining (FDNM) method to explore the cross-modality frequency domain information.
Our method outperforms the second-best method by 5.2% in Rank-1 accuracy and 5.8% in mAP on the SYSU-MM01 dataset.
arXiv Detail & Related papers (2024-01-04T09:19:54Z) - An Adaptive Spatial-Temporal Local Feature Difference Method for
Infrared Small-moving Target Detection [8.466660143185493]
We propose a novel method called spatial-temporal local feature difference (STLFD) with adaptive background suppression (ABS)
Our approach utilizes filters in the spatial and temporal domains and performs pixel-level ABS on the output to enhance the contrast between the target and the background.
Our experimental results demonstrate that the proposed method outperforms existing state-of-the-art methods for infrared small-moving target detection.
arXiv Detail & Related papers (2023-09-05T08:56:20Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
We propose a novel learnable and separable frequency perception mechanism driven by the semantic hierarchy in the frequency domain.
Our entire network adopts a two-stage model, including a frequency-guided coarse localization stage and a detail-preserving fine localization stage.
Compared with the currently existing models, our proposed method achieves competitive performance in three popular benchmark datasets.
arXiv Detail & Related papers (2023-08-17T11:30:46Z) - Fast Fourier Convolution Based Remote Sensor Image Object Detection for
Earth Observation [0.0]
We propose a Frequency-aware Feature Pyramid Framework (FFPF) for remote sensing object detection.
F-ResNet is proposed to perceive the spectral context information by plugging the frequency domain convolution into each stage of the backbone.
The BSFPN is designed to use a bilateral sampling strategy and skipping connection to better model the association of object features at different scales.
arXiv Detail & Related papers (2022-09-01T15:50:58Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Radar Guided Dynamic Visual Attention for Resource-Efficient RGB Object
Detection [10.983063391496543]
We propose a novel radar-guided spatial attention for RGB images to improve the perception quality of autonomous vehicles.
Our method improves the perception of small and long range objects, which are often not detected by the object detectors in RGB mode.
arXiv Detail & Related papers (2022-06-03T18:29:55Z) - Fourier Disentangled Space-Time Attention for Aerial Video Recognition [54.80846279175762]
We present an algorithm, Fourier Activity Recognition (FAR), for UAV video activity recognition.
Our formulation uses a novel Fourier object disentanglement method to innately separate out the human agent from the background.
We have evaluated our approach on multiple UAV datasets including UAV Human RGB, UAV Human Night, Drone Action, and NEC Drone.
arXiv Detail & Related papers (2022-03-21T01:24:53Z) - Infrared Small-Dim Target Detection with Transformer under Complex
Backgrounds [155.388487263872]
We propose a new infrared small-dim target detection method with the transformer.
We adopt the self-attention mechanism of the transformer to learn the interaction information of image features in a larger range.
We also design a feature enhancement module to learn more features of small-dim targets.
arXiv Detail & Related papers (2021-09-29T12:23:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.