Unleashing the Denoising Capability of Diffusion Prior for Solving Inverse Problems
- URL: http://arxiv.org/abs/2406.06959v1
- Date: Tue, 11 Jun 2024 05:35:18 GMT
- Title: Unleashing the Denoising Capability of Diffusion Prior for Solving Inverse Problems
- Authors: Jiawei Zhang, Jiaxin Zhuang, Cheng Jin, Gen Li, Yuantao Gu,
- Abstract summary: The ProjDiff algorithm harnesses the prior information and the denoising capability of a pre-trained diffusion model within the optimization framework.
Experiments on the image restoration tasks and source separation and partial generation tasks demonstrate that ProjDiff exhibits superior performance across various linear and nonlinear inverse problems.
- Score: 26.134240531687453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The recent emergence of diffusion models has significantly advanced the precision of learnable priors, presenting innovative avenues for addressing inverse problems. Since inverse problems inherently entail maximum a posteriori estimation, previous works have endeavored to integrate diffusion priors into the optimization frameworks. However, prevailing optimization-based inverse algorithms primarily exploit the prior information within the diffusion models while neglecting their denoising capability. To bridge this gap, this work leverages the diffusion process to reframe noisy inverse problems as a two-variable constrained optimization task by introducing an auxiliary optimization variable. By employing gradient truncation, the projection gradient descent method is efficiently utilized to solve the corresponding optimization problem. The proposed algorithm, termed ProjDiff, effectively harnesses the prior information and the denoising capability of a pre-trained diffusion model within the optimization framework. Extensive experiments on the image restoration tasks and source separation and partial generation tasks demonstrate that ProjDiff exhibits superior performance across various linear and nonlinear inverse problems, highlighting its potential for practical applications. Code is available at https://github.com/weigerzan/ProjDiff/.
Related papers
- Diffusion State-Guided Projected Gradient for Inverse Problems [82.24625224110099]
We propose Diffusion State-Guided Projected Gradient (DiffStateGrad) for inverse problems.
DiffStateGrad projects the measurement gradient onto a subspace that is a low-rank approximation of an intermediate state of the diffusion process.
We highlight that DiffStateGrad improves the robustness of diffusion models in terms of the choice of measurement guidance step size and noise.
arXiv Detail & Related papers (2024-10-04T14:26:54Z) - Inverse Problems with Diffusion Models: A MAP Estimation Perspective [5.002087490888723]
In Computer, several image restoration tasks such as inpainting, deblurring, and super-resolution can be formally modeled as inverse problems.
We propose a MAP estimation framework to model the reverse conditional generation process of a continuous time diffusion model.
We use our proposed framework to develop effective algorithms for image restoration.
arXiv Detail & Related papers (2024-07-27T15:41:13Z) - Diffusion Prior-Based Amortized Variational Inference for Noisy Inverse Problems [12.482127049881026]
We propose a novel approach to solve inverse problems with a diffusion prior from an amortized variational inference perspective.
Our amortized inference learns a function that directly maps measurements to the implicit posterior distributions of corresponding clean data, enabling a single-step posterior sampling even for unseen measurements.
arXiv Detail & Related papers (2024-07-23T02:14:18Z) - Improving Diffusion Models for Inverse Problems Using Optimal Posterior Covariance [52.093434664236014]
Recent diffusion models provide a promising zero-shot solution to noisy linear inverse problems without retraining for specific inverse problems.
Inspired by this finding, we propose to improve recent methods by using more principled covariance determined by maximum likelihood estimation.
arXiv Detail & Related papers (2024-02-03T13:35:39Z) - Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency [7.671153315762146]
Training diffusion models in the pixel space are both data-intensive and computationally demanding.
Latent diffusion models, which operate in a much lower-dimensional space, offer a solution to these challenges.
We propose textitReSample, an algorithm that can solve general inverse problems with pre-trained latent diffusion models.
arXiv Detail & Related papers (2023-07-16T18:42:01Z) - Solving Linear Inverse Problems Provably via Posterior Sampling with
Latent Diffusion Models [98.95988351420334]
We present the first framework to solve linear inverse problems leveraging pre-trained latent diffusion models.
We theoretically analyze our algorithm showing provable sample recovery in a linear model setting.
arXiv Detail & Related papers (2023-07-02T17:21:30Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Diffusion Posterior Sampling for General Noisy Inverse Problems [50.873313752797124]
We extend diffusion solvers to handle noisy (non)linear inverse problems via approximation of the posterior sampling.
Our method demonstrates that diffusion models can incorporate various measurement noise statistics.
arXiv Detail & Related papers (2022-09-29T11:12:27Z) - Intermediate Layer Optimization for Inverse Problems using Deep
Generative Models [86.29330440222199]
ILO is a novel optimization algorithm for solving inverse problems with deep generative models.
We empirically show that our approach outperforms state-of-the-art methods introduced in StyleGAN-2 and PULSE for a wide range of inverse problems.
arXiv Detail & Related papers (2021-02-15T06:52:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.