Inverse Problems with Diffusion Models: A MAP Estimation Perspective
- URL: http://arxiv.org/abs/2407.20784v2
- Date: Wed, 18 Sep 2024 14:01:47 GMT
- Title: Inverse Problems with Diffusion Models: A MAP Estimation Perspective
- Authors: Sai Bharath Chandra Gutha, Ricardo Vinuesa, Hossein Azizpour,
- Abstract summary: In Computer, several image restoration tasks such as inpainting, deblurring, and super-resolution can be formally modeled as inverse problems.
We propose a MAP estimation framework to model the reverse conditional generation process of a continuous time diffusion model.
We use our proposed framework to develop effective algorithms for image restoration.
- Score: 5.002087490888723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inverse problems have many applications in science and engineering. In Computer vision, several image restoration tasks such as inpainting, deblurring, and super-resolution can be formally modeled as inverse problems. Recently, methods have been developed for solving inverse problems that only leverage a pre-trained unconditional diffusion model and do not require additional task-specific training. In such methods, however, the inherent intractability of determining the conditional score function during the reverse diffusion process poses a real challenge, leaving the methods to settle with an approximation instead, which affects their performance in practice. Here, we propose a MAP estimation framework to model the reverse conditional generation process of a continuous time diffusion model as an optimization process of the underlying MAP objective, whose gradient term is tractable. In theory, the proposed framework can be applied to solve general inverse problems using gradient-based optimization methods. However, given the highly non-convex nature of the loss objective, finding a perfect gradient-based optimization algorithm can be quite challenging, nevertheless, our framework offers several potential research directions. We use our proposed formulation to develop empirically effective algorithms for image restoration. We validate our proposed algorithms with extensive experiments over multiple datasets across several restoration tasks.
Related papers
- Bayesian Conditioned Diffusion Models for Inverse Problems [11.67269909384503]
Diffusion models excel in many image reconstruction tasks that involve inverse problems based on a forward measurement operator.
We propose a novel Bayesian conditioning technique for diffusion models, BCDM, based on score-functions associated with the conditional distribution of desired images.
We show state-of-the-art performance in image dealiasing, deblurring, super-resolution, and inpainting with the proposed technique.
arXiv Detail & Related papers (2024-06-14T07:13:03Z) - Unleashing the Denoising Capability of Diffusion Prior for Solving Inverse Problems [26.134240531687453]
The ProjDiff algorithm harnesses the prior information and the denoising capability of a pre-trained diffusion model within the optimization framework.
Experiments on the image restoration tasks and source separation and partial generation tasks demonstrate that ProjDiff exhibits superior performance across various linear and nonlinear inverse problems.
arXiv Detail & Related papers (2024-06-11T05:35:18Z) - Flow Priors for Linear Inverse Problems via Iterative Corrupted Trajectory Matching [35.77769905072651]
We propose an iterative algorithm to approximate the MAP estimator efficiently to solve a variety of linear inverse problems.
Our algorithm is mathematically justified by the observation that the MAP objective can be approximated by a sum of $N$ local MAP'' objectives.
We validate our approach for various linear inverse problems, such as super-resolution, deblurring, inpainting, and compressed sensing.
arXiv Detail & Related papers (2024-05-29T06:56:12Z) - ODE-DPS: ODE-based Diffusion Posterior Sampling for Inverse Problems in Partial Differential Equation [1.8356973269166506]
We introduce a novel unsupervised inversion methodology tailored for solving inverse problems arising from PDEs.
Our approach operates within the Bayesian inversion framework, treating the task of solving the posterior distribution as a conditional generation process.
To enhance the accuracy of inversion results, we propose an ODE-based Diffusion inversion algorithm.
arXiv Detail & Related papers (2024-04-21T00:57:13Z) - Model-Based Reparameterization Policy Gradient Methods: Theory and
Practical Algorithms [88.74308282658133]
Reization (RP) Policy Gradient Methods (PGMs) have been widely adopted for continuous control tasks in robotics and computer graphics.
Recent studies have revealed that, when applied to long-term reinforcement learning problems, model-based RP PGMs may experience chaotic and non-smooth optimization landscapes.
We propose a spectral normalization method to mitigate the exploding variance issue caused by long model unrolls.
arXiv Detail & Related papers (2023-10-30T18:43:21Z) - PGDiff: Guiding Diffusion Models for Versatile Face Restoration via
Partial Guidance [65.5618804029422]
Previous works have achieved noteworthy success by limiting the solution space using explicit degradation models.
We propose PGDiff by introducing partial guidance, a fresh perspective that is more adaptable to real-world degradations.
Our method not only outperforms existing diffusion-prior-based approaches but also competes favorably with task-specific models.
arXiv Detail & Related papers (2023-09-19T17:51:33Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
Inverse tasks can be formulated as inferring a posterior distribution over data.
This is however challenging in diffusion models since the nonlinear and iterative nature of the diffusion process renders the posterior intractable.
We propose a variational approach that by design seeks to approximate the true posterior distribution.
arXiv Detail & Related papers (2023-05-07T23:00:47Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Improving Diffusion Models for Inverse Problems using Manifold Constraints [55.91148172752894]
We show that current solvers throw the sample path off the data manifold, and hence the error accumulates.
To address this, we propose an additional correction term inspired by the manifold constraint.
We show that our method is superior to the previous methods both theoretically and empirically.
arXiv Detail & Related papers (2022-06-02T09:06:10Z) - Mining the manifolds of deep generative models for multiple
data-consistent solutions of ill-posed tomographic imaging problems [10.115302976900445]
Tomographic imaging is in general an ill-posed inverse problem.
We propose a new empirical sampling method that computes multiple solutions of a tomographic inverse problem.
arXiv Detail & Related papers (2022-02-10T20:27:31Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.