論文の概要: Reading Miscue Detection in Primary School through Automatic Speech Recognition
- arxiv url: http://arxiv.org/abs/2406.07060v1
- Date: Tue, 11 Jun 2024 08:41:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 16:54:22.843102
- Title: Reading Miscue Detection in Primary School through Automatic Speech Recognition
- Title(参考訳): 音声認識による小学校の読解ミス検出
- Authors: Lingyun Gao, Cristian Tejedor-Garcia, Helmer Strik, Catia Cucchiarini,
- Abstract要約: 本研究は,オランダ語母語話者の音声認識において,SOTA(State-of-the-art)事前学習モデルの有効性について検討した。
We found that Hubert Large finetuned on Dutch speech achieves SOTA phoneme-level child speech Recognition。
Wav2Vec2 Largeは最大リコール率0.83、Whisperは0.52、F1スコア0.52である。
- 参考スコア(独自算出の注目度): 10.137389745562512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic reading diagnosis systems can benefit both teachers for more efficient scoring of reading exercises and students for accessing reading exercises with feedback more easily. However, there are limited studies on Automatic Speech Recognition (ASR) for child speech in languages other than English, and limited research on ASR-based reading diagnosis systems. This study investigates how efficiently state-of-the-art (SOTA) pretrained ASR models recognize Dutch native children speech and manage to detect reading miscues. We found that Hubert Large finetuned on Dutch speech achieves SOTA phoneme-level child speech recognition (PER at 23.1\%), while Whisper (Faster Whisper Large-v2) achieves SOTA word-level performance (WER at 9.8\%). Our findings suggest that Wav2Vec2 Large and Whisper are the two best ASR models for reading miscue detection. Specifically, Wav2Vec2 Large shows the highest recall at 0.83, whereas Whisper exhibits the highest precision at 0.52 and an F1 score of 0.52.
- Abstract(参考訳): 自動読解診断システムは,読解演習を効率よく評価する教師と,読解演習にフィードバックでアクセスする学生の両方に有用である。
しかし、英語以外の言語における子音の自動音声認識(ASR)についての研究は限られており、ASRに基づく読影診断システムについての研究は限られている。
本研究は, オランダ語母語話者の言語認識と, 読解ミスの発見に有効なSOTAモデルについて検討した。
We found that Hubert Large finetuned on Dutch speech achieves SOTA phoneme-level child speech recognition (PER at 23.1\%), while Whisper (Faster Whisper Large-v2) achieves SOTA word-level performance (WER at 9.8\%)。
以上の結果から, Wav2Vec2 Large と Whisper は誤読検出に最適な2つの ASR モデルであることが示唆された。
特に、Wav2Vec2 Largeは0.83で、Whisperは0.52でF1スコアは0.52である。
関連論文リスト
- Towards Unsupervised Speech Recognition Without Pronunciation Models [57.222729245842054]
ほとんどの言語では、音声認識システムを効果的に訓練するのに十分なペア音声とテキストデータがない。
本稿では、教師なしASRシステムを開発するために、音素レキシコンへの依存を除去することを提案する。
音声合成とテキスト・テキスト・マスクによるトークン埋込から教師なし音声認識が実現可能であることを実験的に実証した。
論文 参考訳(メタデータ) (2024-06-12T16:30:58Z) - Automatic Speech Recognition of Non-Native Child Speech for Language
Learning Applications [18.849741353784328]
我々は、最先端のASRシステムであるWav2Vec2.0とWhisper AIの性能を評価する。
オランダ語母語,非母語母語母語,非母語母語母語,母語母語母語母語母語,母語母語母語母語母語,母語母語母語母語母語母語母語母語,母語母語母語母語母語母語母語母語,母語母語母語母語母語母語
論文 参考訳(メタデータ) (2023-06-29T06:14:26Z) - From English to More Languages: Parameter-Efficient Model Reprogramming
for Cross-Lingual Speech Recognition [50.93943755401025]
言語間音声認識のためのニューラルモデル再プログラミングに基づく新しいパラメータ効率学習フレームワークを提案する。
我々は、学習可能な事前学習機能強化に焦点を当てた、異なる補助的ニューラルネットワークアーキテクチャを設計する。
提案手法は,既存のASRチューニングアーキテクチャとその拡張性能を自己監督的損失で向上させる。
論文 参考訳(メタデータ) (2023-01-19T02:37:56Z) - Nonwords Pronunciation Classification in Language Development Tests for
Preschool Children [7.224391516694955]
本研究の目的は,子どもの言語発達が年齢的に適切かどうかを自動評価することである。
本研究の課題は、発話された非単語が正しく発声されたかどうかを判断することである。
特定の言語構造をモデル化する動機付けの異なるアプローチを比較する。
論文 参考訳(メタデータ) (2022-06-16T10:19:47Z) - Cross-lingual Self-Supervised Speech Representations for Improved
Dysarthric Speech Recognition [15.136348385992047]
本研究では, 変形性関節症に対するASRシステムの訓練機能として, Wav2Vec を用いた自己教師型音声表現の有用性について検討した。
我々は、Wav2Vec、Hubert、および言語間XLSRモデルから抽出された特徴を持つ音響モデルを訓練する。
結果から,大容量データに事前学習した音声表現は,単語誤り率(WER)を向上する可能性が示唆された。
論文 参考訳(メタデータ) (2022-04-04T17:36:01Z) - Automatic Speech recognition for Speech Assessment of Preschool Children [4.554894288663752]
本研究では,幼児期の音声の音響的特徴と言語的特徴について検討した。
Wav2Vec 2.0は、堅牢なエンドツーエンド音声認識システムを構築するために使用できるパラダイムである。
論文 参考訳(メタデータ) (2022-03-24T07:15:24Z) - A study on native American English speech recognition by Indian
listeners with varying word familiarity level [62.14295630922855]
発声を認識している間、各聴取者から3種類の応答が得られます。
これらの転写から単語誤り率(WER)を算出し、認識された文と原文との類似性を評価する指標として用いる。
話者のナティビティの賢明な分析は、一部のナティビティの話者からの発声が、他のいくつかのナティビティに比べてインド人のリスナーによって認識されるのが困難であることを示している。
論文 参考訳(メタデータ) (2021-12-08T07:43:38Z) - Do We Still Need Automatic Speech Recognition for Spoken Language
Understanding? [14.575551366682872]
学習音声の特徴は,3つの分類課題において,ASRの書き起こしよりも優れていることを示す。
我々は、wav2vec 2.0表現を語彙外単語に固有の頑健さを、パフォーマンス向上の鍵として強調する。
論文 参考訳(メタデータ) (2021-11-29T15:13:36Z) - Pushing the Limits of Semi-Supervised Learning for Automatic Speech
Recognition [97.44056170380726]
我々は,半教師付き学習と自動音声認識の組み合わせを用いて,LibriSpeechの最先端結果を得る。
我々は,wav2vec 2.0事前学習を用いた巨大コンフォーマーモデルを用いてSpecAugmentを用いたノイズの多い学生訓練を行う。
We can able to achieve word-error-rates (WERs) 1.4%/2.6% on the LibriSpeech test/test-other set against the current-of-the-art WERs 1.7%/3.3%。
論文 参考訳(メタデータ) (2020-10-20T17:58:13Z) - LRSpeech: Extremely Low-Resource Speech Synthesis and Recognition [148.43282526983637]
データコストの低い言語のためのTLSおよびASRシステムであるLSpeechを開発した。
実験言語(英語)と真の低リソース言語(リトアニア語)で実験を行い,LRSpeechの有効性を検証する。
現在、より稀な言語でTSをサポートするために、商用のクラウド音声サービスにLSpeechをデプロイしています。
論文 参考訳(メタデータ) (2020-08-09T08:16:33Z) - Unsupervised Cross-lingual Representation Learning for Speech
Recognition [63.85924123692923]
XLSRは、複数の言語における音声の生波形から1つのモデルを事前学習することで、言語間音声表現を学習する。
我々は、マスク付き潜在音声表現よりも対照的なタスクを解くことで訓練されたwav2vec 2.0を構築した。
実験により、言語間事前学習はモノリンガル事前訓練よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2020-06-24T18:25:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。