論文の概要: Triage of 3D pathology data via 2.5D multiple-instance learning to guide pathologist assessments
- arxiv url: http://arxiv.org/abs/2406.07061v1
- Date: Tue, 11 Jun 2024 08:42:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 16:54:22.839933
- Title: Triage of 3D pathology data via 2.5D multiple-instance learning to guide pathologist assessments
- Title(参考訳): 2.5D多重インスタンス学習による3次元病理データの探索と病理組織学的評価
- Authors: Gan Gao, Andrew H. Song, Fiona Wang, David Brenes, Rui Wang, Sarah S. L. Chow, Kevin W. Bishop, Lawrence D. True, Faisal Mahmood, Jonathan T. C. Liu,
- Abstract要約: 本稿では,3次元生検において最もリスクの高い2Dスライスを自動的に識別する深層学習トリアージアプローチであるCARP3Dを提案する。
前立腺がんのリスク層化のために、CARP3Dは2Dセクションの独立解析に依存して、90.4%の曲線(AUC)の領域を達成している。
- 参考スコア(独自算出の注目度): 7.735043623909641
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate patient diagnoses based on human tissue biopsies are hindered by current clinical practice, where pathologists assess only a limited number of thin 2D tissue slices sectioned from 3D volumetric tissue. Recent advances in non-destructive 3D pathology, such as open-top light-sheet microscopy, enable comprehensive imaging of spatially heterogeneous tissue morphologies, offering the feasibility to improve diagnostic determinations. A potential early route towards clinical adoption for 3D pathology is to rely on pathologists for final diagnosis based on viewing familiar 2D H&E-like image sections from the 3D datasets. However, manual examination of the massive 3D pathology datasets is infeasible. To address this, we present CARP3D, a deep learning triage approach that automatically identifies the highest-risk 2D slices within 3D volumetric biopsy, enabling time-efficient review by pathologists. For a given slice in the biopsy, we estimate its risk by performing attention-based aggregation of 2D patches within each slice, followed by pooling of the neighboring slices to compute a context-aware 2.5D risk score. For prostate cancer risk stratification, CARP3D achieves an area under the curve (AUC) of 90.4% for triaging slices, outperforming methods relying on independent analysis of 2D sections (AUC=81.3%). These results suggest that integrating additional depth context enhances the model's discriminative capabilities. In conclusion, CARP3D has the potential to improve pathologist diagnosis via accurate triage of high-risk slices within large-volume 3D pathology datasets.
- Abstract(参考訳): ヒトの組織生検に基づく正確な患者の診断は、病理学者が3D体積組織から分離した薄い2D組織スライスを限られた数だけ評価する、現在の臨床実践によって妨げられている。
オープントップ光シート顕微鏡のような非破壊的な3D病理の最近の進歩は、空間的に不均一な組織形態の包括的イメージングを可能にし、診断精度を向上させることができる。
3D画像から見慣れた2D H&Eライクな画像セクションを観察することで、病理医を最終診断に頼ることが考えられる。
しかし, 大規模3次元病理データセットの手作業による検査は不可能である。
そこで本研究では,3次元生検において最もリスクの高い2Dスライスを自動的に同定し,病理医による時間効率のレビューを可能にする深層学習トリアージアプローチであるCARP3Dを提案する。
生検のスライスについて,各スライス内の2Dパッチの注意に基づくアグリゲーションを行い,次に隣接するスライスをプールし,コンテキスト認識2.5Dリスクスコアを算出することにより,そのリスクを推定する。
前立腺がんのリスク層化では、CARP3Dは2Dセクションの独立解析(AUC=81.3%)に依存して、90.4%の曲線(AUC)の領域を達成している。
これらの結果は、追加の深度コンテキストを統合することでモデルの識別能力を高めることを示唆している。
結論として,CARP3Dは高リスクスライスを高精度にトリアージすることで,病理診断を改善する可能性を秘めている。
関連論文リスト
- Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
超解像のための仮設スライス拡散は、生物学的標本のすべての空間次元にわたるデータ生成分布の固有同値性を利用する。
我々は,高解像度2次元画像の高速取得を特徴とするSliceRの組織学的刺激(SRH)への応用に着目する。
論文 参考訳(メタデータ) (2024-04-15T02:41:55Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
甲状腺疾患は高分解能超音波(US)で診断されることが多い
縦断追跡は病理甲状腺形態の変化をモニタリングするための重要な診断プロトコルである。
3次元形状表現におけるUS画像の自動スライスローカライズのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T10:10:46Z) - Weakly Supervised AI for Efficient Analysis of 3D Pathology Samples [6.381153836752796]
3次元組織画像処理のためのボリュームブロック解析(MAMBA)のためのModality-Agnostic Multiple Case Learningを提案する。
3Dブロックベースのアプローチでは、MAMBAは2Dの単一スライスによる予測よりも優れた受信特性曲線(AUC)の0.86と0.74の領域を達成している。
さらに, 組織体積が大きくなることで予後が向上し, サンプリングバイアスによるリスク予測のばらつきが軽減されることが示唆された。
論文 参考訳(メタデータ) (2023-07-27T14:48:02Z) - 3D unsupervised anomaly detection and localization through virtual
multi-view projection and reconstruction: Clinical validation on low-dose
chest computed tomography [2.2302915692528367]
仮想多視点投影と再構成と呼ばれるコンピュータ支援診断のためのディープニューラルネットワークに基づく手法を提案する。
本手法は, 教師あり学習に基づくゴールド標準と比較して, 患者レベルの異常検出を10%改善する。
異常領域を93%の精度でローカライズし、高い性能を示す。
論文 参考訳(メタデータ) (2022-06-18T13:22:00Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Deep Learning Based Analysis of Prostate Cancer from MP-MRI [0.0]
前立腺癌の診断は、過剰診断の問題に直面し、不必要な治療による副作用を損なう。
本研究では,MRIを応用したコンピュータ支援診断のための深層学習手法について検討する。
論文 参考訳(メタデータ) (2021-06-02T12:42:35Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
CTスライスにおける普遍的病変検出のための3Dコンテキスト強化2D特徴を効率的に抽出するための修飾擬似3次元特徴ピラミッドネットワーク(MP3D FPN)を提案する。
新たな事前学習手法により,提案したMP3D FPNは,DeepLesionデータセット上での最先端検出性能を実現する。
提案された3Dプリトレーニングウェイトは、他の3D医療画像分析タスクのパフォーマンスを高めるために使用できる。
論文 参考訳(メタデータ) (2020-12-16T07:11:16Z) - Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine
Framework and Its Adversarial Examples [74.92488215859991]
本稿では,これらの課題に効果的に取り組むために,新しい3Dベースの粗粒度フレームワークを提案する。
提案した3Dベースのフレームワークは、3つの軸すべてに沿ってリッチな空間情報を活用できるため、2Dよりも大きなマージンで優れている。
我々は,3つのデータセット,NIH膵データセット,JHMI膵データセット,JHMI病理嚢胞データセットについて実験を行った。
論文 参考訳(メタデータ) (2020-10-29T15:39:19Z) - Deep Volumetric Universal Lesion Detection using Light-Weight Pseudo 3D
Convolution and Surface Point Regression [23.916776570010285]
コンピュータ支援型病変/重要なフィンディング検出技術は、医療画像の核心にある。
そこで本研究では,(1) P3DC演算子を組み込んだ深層アンカーフリーワンステージVULDフレームワークを提案する。
3次元病変の空間範囲を効果的に抑圧する新しいSPR法は、その代表的キーポイントを病変表面にピンポイントすることで実現される。
論文 参考訳(メタデータ) (2020-08-30T19:42:06Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - Detecting Scatteredly-Distributed, Small, andCritically Important
Objects in 3D OncologyImaging via Decision Stratification [23.075722503902714]
本研究は腫瘍学的に重要なリンパ節(または不審な癌転移)の検出と分節に焦点を当てた。
我々はOSLNを腫瘍近位・腫瘍遠位分類に分割する分断型決定階層化手法を提案する。
局所的な3D画像パッチから得られた特徴と高次病変特性を組み合わせた新しいグローバルローカルネットワーク(GLNet)を提案する。
論文 参考訳(メタデータ) (2020-05-27T23:12:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。