Triage of 3D pathology data via 2.5D multiple-instance learning to guide pathologist assessments
- URL: http://arxiv.org/abs/2406.07061v1
- Date: Tue, 11 Jun 2024 08:42:07 GMT
- Title: Triage of 3D pathology data via 2.5D multiple-instance learning to guide pathologist assessments
- Authors: Gan Gao, Andrew H. Song, Fiona Wang, David Brenes, Rui Wang, Sarah S. L. Chow, Kevin W. Bishop, Lawrence D. True, Faisal Mahmood, Jonathan T. C. Liu,
- Abstract summary: We present CARP3D, a deep learning triage approach that automatically identifies the highest-risk 2D slices within 3D volumetric biopsy.
For prostate cancer risk stratification, CARP3D achieves an area under the curve (AUC) of 90.4% for triaging slices, outperforming methods relying on independent analysis of 2D sections.
- Score: 7.735043623909641
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate patient diagnoses based on human tissue biopsies are hindered by current clinical practice, where pathologists assess only a limited number of thin 2D tissue slices sectioned from 3D volumetric tissue. Recent advances in non-destructive 3D pathology, such as open-top light-sheet microscopy, enable comprehensive imaging of spatially heterogeneous tissue morphologies, offering the feasibility to improve diagnostic determinations. A potential early route towards clinical adoption for 3D pathology is to rely on pathologists for final diagnosis based on viewing familiar 2D H&E-like image sections from the 3D datasets. However, manual examination of the massive 3D pathology datasets is infeasible. To address this, we present CARP3D, a deep learning triage approach that automatically identifies the highest-risk 2D slices within 3D volumetric biopsy, enabling time-efficient review by pathologists. For a given slice in the biopsy, we estimate its risk by performing attention-based aggregation of 2D patches within each slice, followed by pooling of the neighboring slices to compute a context-aware 2.5D risk score. For prostate cancer risk stratification, CARP3D achieves an area under the curve (AUC) of 90.4% for triaging slices, outperforming methods relying on independent analysis of 2D sections (AUC=81.3%). These results suggest that integrating additional depth context enhances the model's discriminative capabilities. In conclusion, CARP3D has the potential to improve pathologist diagnosis via accurate triage of high-risk slices within large-volume 3D pathology datasets.
Related papers
- Super-resolution of biomedical volumes with 2D supervision [84.5255884646906]
Masked slice diffusion for super-resolution exploits the inherent equivalence in the data-generating distribution across all spatial dimensions of biological specimens.
We focus on the application of SliceR to stimulated histology (SRH), characterized by its rapid acquisition of high-resolution 2D images but slow and costly optical z-sectioning.
arXiv Detail & Related papers (2024-04-15T02:41:55Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
Thyroid disorders are most commonly diagnosed using high-resolution Ultrasound (US)
Longitudinal tracking is a pivotal diagnostic protocol for monitoring changes in pathological thyroid morphology.
We present a framework for automated US image slice localization within a 3D shape representation.
arXiv Detail & Related papers (2023-09-01T10:10:46Z) - Weakly Supervised AI for Efficient Analysis of 3D Pathology Samples [6.381153836752796]
We present Modality-Agnostic Multiple instance learning for volumetric Block Analysis (MAMBA) for processing 3D tissue images.
With the 3D block-based approach, MAMBA achieves an area under the receiver operating characteristic curve (AUC) of 0.86 and 0.74, superior to 2D traditional single-slice-based prognostication.
Further analyses reveal that the incorporation of greater tissue volume improves prognostic performance and mitigates risk prediction variability from sampling bias.
arXiv Detail & Related papers (2023-07-27T14:48:02Z) - 3D unsupervised anomaly detection and localization through virtual
multi-view projection and reconstruction: Clinical validation on low-dose
chest computed tomography [2.2302915692528367]
We propose a method based on a deep neural network for computer-aided diagnosis called virtual multi-view projection and reconstruction.
The proposed method improves the patient-level anomaly detection by 10% compared with a gold standard based on supervised learning.
It localizes the anomaly region with 93% accuracy, demonstrating its high performance.
arXiv Detail & Related papers (2022-06-18T13:22:00Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Deep Learning Based Analysis of Prostate Cancer from MP-MRI [0.0]
The diagnosis of prostate cancer faces a problem with overdiagnosis that leads to damaging side effects due to unnecessary treatment.
This study aims to investigate the use of deep learning techniques to explore computer-aid diagnosis based on MRI as input.
arXiv Detail & Related papers (2021-06-02T12:42:35Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine
Framework and Its Adversarial Examples [74.92488215859991]
We propose a novel 3D-based coarse-to-fine framework to efficiently tackle these challenges.
The proposed 3D-based framework outperforms their 2D counterparts by a large margin since it can leverage the rich spatial information along all three axes.
We conduct experiments on three datasets, the NIH pancreas dataset, the JHMI pancreas dataset and the JHMI pathological cyst dataset.
arXiv Detail & Related papers (2020-10-29T15:39:19Z) - Deep Volumetric Universal Lesion Detection using Light-Weight Pseudo 3D
Convolution and Surface Point Regression [23.916776570010285]
Computer-aided lesion/significant-findings detection techniques are at the core of medical imaging.
We propose a novel deep anchor-free one-stage VULD framework that incorporates (1) P3DC operators to recycle the architectural configurations and pre-trained weights from the off-the-shelf 2D networks.
New SPR method to effectively regress the 3D lesion spatial extents by pinpointing their representative key points on lesion surfaces.
arXiv Detail & Related papers (2020-08-30T19:42:06Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Detecting Scatteredly-Distributed, Small, andCritically Important
Objects in 3D OncologyImaging via Decision Stratification [23.075722503902714]
We focus on the detection and segmentation of oncology-significant (or suspicious cancer metastasized) lymph nodes.
We propose a divide-and-conquer decision stratification approach that divides OSLNs into tumor-proximal and tumor-distal categories.
We present a novel global-local network (GLNet) that combines high-level lesion characteristics with features learned from localized 3D image patches.
arXiv Detail & Related papers (2020-05-27T23:12:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.