VoxNeuS: Enhancing Voxel-Based Neural Surface Reconstruction via Gradient Interpolation
- URL: http://arxiv.org/abs/2406.07170v1
- Date: Tue, 11 Jun 2024 11:26:27 GMT
- Title: VoxNeuS: Enhancing Voxel-Based Neural Surface Reconstruction via Gradient Interpolation
- Authors: Sidun Liu, Peng Qiao, Zongxin Ye, Wenyu Li, Yong Dou,
- Abstract summary: We propose VoxNeuS, a lightweight surface reconstruction method for computational and memory efficient neural surface reconstruction.
The entire training process takes 15 minutes and less than 3 GB of memory on a single 2080ti GPU.
- Score: 10.458776364195796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Surface Reconstruction learns a Signed Distance Field~(SDF) to reconstruct the 3D model from multi-view images. Previous works adopt voxel-based explicit representation to improve efficiency. However, they ignored the gradient instability of interpolation in the voxel grid, leading to degradation on convergence and smoothness. Besides, previous works entangled the optimization of geometry and radiance, which leads to the deformation of geometry to explain radiance, causing artifacts when reconstructing textured planes. In this work, we reveal that the instability of gradient comes from its discontinuity during trilinear interpolation, and propose to use the interpolated gradient instead of the original analytical gradient to eliminate the discontinuity. Based on gradient interpolation, we propose VoxNeuS, a lightweight surface reconstruction method for computational and memory efficient neural surface reconstruction. Thanks to the explicit representation, the gradient of regularization terms, i.e. Eikonal and curvature loss, are directly solved, avoiding computation and memory-access overhead. Further, VoxNeuS adopts a geometry-radiance disentangled architecture to handle the geometry deformation from radiance optimization. The experimental results show that VoxNeuS achieves better reconstruction quality than previous works. The entire training process takes 15 minutes and less than 3 GB of memory on a single 2080ti GPU.
Related papers
- Geometry Field Splatting with Gaussian Surfels [23.412129038089326]
We leverage the geometry field proposed in recent work for opaque surfaces, which can then be converted to volume densities.
We adapt Gaussian kernels or surfels to the geometry field rather than the volume, enabling precise reconstruction of opaque solids.
We demonstrate significant improvement in the quality of reconstructed 3D surfaces on widely-used datasets.
arXiv Detail & Related papers (2024-11-26T03:07:05Z) - AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
We present AniSDF, a novel approach that learns fused-granularity neural surfaces with physics-based encoding for high-fidelity 3D reconstruction.
Our method boosts the quality of SDF-based methods by a great scale in both geometry reconstruction and novel-view synthesis.
arXiv Detail & Related papers (2024-10-02T03:10:38Z) - RaNeuS: Ray-adaptive Neural Surface Reconstruction [87.20343320266215]
We leverage a differentiable radiance field eg NeRF to reconstruct detailed 3D surfaces in addition to producing novel view renderings.
Considering that different methods formulate and optimize the projection from SDF to radiance field with a globally constant Eikonal regularization, we improve with a ray-wise weighting factor.
Our proposed textitRaNeuS are extensively evaluated on both synthetic and real datasets.
arXiv Detail & Related papers (2024-06-14T07:54:25Z) - GeoGaussian: Geometry-aware Gaussian Splatting for Scene Rendering [83.19049705653072]
During the Gaussian Splatting optimization process, the scene's geometry can gradually deteriorate if its structure is not deliberately preserved.
We propose a novel approach called GeoGaussian to mitigate this issue.
Our proposed pipeline achieves state-of-the-art performance in novel view synthesis and geometric reconstruction.
arXiv Detail & Related papers (2024-03-17T20:06:41Z) - GradientSurf: Gradient-Domain Neural Surface Reconstruction from RGB
Video [0.0]
GradientSurf is a novel algorithm for real time surface reconstruction from monocular RGB video.
Inspired by Poisson Surface Reconstruction, the proposed method builds on the tight coupling between surface, volume, and oriented point cloud.
For the task of indoor scene reconstruction, experimental results show that the proposed method reconstructs surfaces with more details in curved regions.
arXiv Detail & Related papers (2023-10-09T04:54:30Z) - NeuralUDF: Learning Unsigned Distance Fields for Multi-view
Reconstruction of Surfaces with Arbitrary Topologies [87.06532943371575]
We present a novel method, called NeuralUDF, for reconstructing surfaces with arbitrary topologies from 2D images via volume rendering.
In this paper, we propose to represent surfaces as the Unsigned Distance Function (UDF) and develop a new volume rendering scheme to learn the neural UDF representation.
arXiv Detail & Related papers (2022-11-25T15:21:45Z) - Recovering Fine Details for Neural Implicit Surface Reconstruction [3.9702081347126943]
We present D-NeuS, a volume rendering neural implicit surface reconstruction method capable to recover fine geometry details.
We impose multi-view feature consistency on the surface points, derived by interpolating SDF zero-crossings from sampled points along rays.
Our method reconstructs high-accuracy surfaces with details, and outperforms the state of the art.
arXiv Detail & Related papers (2022-11-21T10:06:09Z) - Learning Neural Radiance Fields from Multi-View Geometry [1.1011268090482573]
We present a framework, called MVG-NeRF, that combines Multi-View Geometry algorithms and Neural Radiance Fields (NeRF) for image-based 3D reconstruction.
NeRF has revolutionized the field of implicit 3D representations, mainly due to a differentiable rendering formulation that enables high-quality and geometry-aware novel view synthesis.
arXiv Detail & Related papers (2022-10-24T08:53:35Z) - Voxurf: Voxel-based Efficient and Accurate Neural Surface Reconstruction [142.61256012419562]
We present Voxurf, a voxel-based surface reconstruction approach that is both efficient and accurate.
Voxurf addresses the aforementioned issues via several key designs, including 1) a two-stage training procedure that attains a coherent coarse shape and recovers fine details successively, 2) a dual color network that maintains color-geometry dependency, and 3) a hierarchical geometry feature to encourage information propagation across voxels.
arXiv Detail & Related papers (2022-08-26T14:48:02Z) - Improved surface reconstruction using high-frequency details [44.73668037810989]
We propose a novel method to improve the quality of surface reconstruction in neural rendering.
Our results show that our method can reconstruct high-frequency surface details and obtain better surface reconstruction quality than the current state of the art.
arXiv Detail & Related papers (2022-06-15T23:46:48Z) - Learning Deformable Tetrahedral Meshes for 3D Reconstruction [78.0514377738632]
3D shape representations that accommodate learning-based 3D reconstruction are an open problem in machine learning and computer graphics.
Previous work on neural 3D reconstruction demonstrated benefits, but also limitations, of point cloud, voxel, surface mesh, and implicit function representations.
We introduce Deformable Tetrahedral Meshes (DefTet) as a particular parameterization that utilizes volumetric tetrahedral meshes for the reconstruction problem.
arXiv Detail & Related papers (2020-11-03T02:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.