Detecting Markovianity of Quantum Processes via Recurrent Neural Networks
- URL: http://arxiv.org/abs/2406.07226v2
- Date: Wed, 12 Jun 2024 14:36:52 GMT
- Title: Detecting Markovianity of Quantum Processes via Recurrent Neural Networks
- Authors: Angela Rosy Morgillo, Massimiliano F. Sacchi, Chiara Macchiavello,
- Abstract summary: We present a novel methodology utilizing Recurrent Neural Networks (RNNs) to classify Markovian and non-Markovian quantum processes.
The model exhibits exceptional accuracy, surpassing 95%, across diverse scenarios.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel methodology utilizing Recurrent Neural Networks (RNNs) to classify Markovian and non-Markovian quantum processes, leveraging time series data derived from Choi states. The model exhibits exceptional accuracy, surpassing 95%, across diverse scenarios, encompassing dephasing and Pauli channels in an arbitrary basis, and generalized amplitude damping dynamics. Additionally, the developed model shows efficient forecasting capabilities for the analyzed time series data. These results suggest the potential of RNNs in discerning and predicting the Markovian nature of quantum processes.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient and Effective Time-Series Forecasting with Spiking Neural Networks [47.371024581669516]
Spiking neural networks (SNNs) provide a unique pathway for capturing the intricacies of temporal data.
Applying SNNs to time-series forecasting is challenging due to difficulties in effective temporal alignment, complexities in encoding processes, and the absence of standardized guidelines for model selection.
We propose a framework for SNNs in time-series forecasting tasks, leveraging the efficiency of spiking neurons in processing temporal information.
arXiv Detail & Related papers (2024-02-02T16:23:50Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
We study the inner workings of neural networks trained to classify regular-versus-chaotic time series.
We find that the relation between input periodicity and activation periodicity is key for the performance of LKCNN models.
arXiv Detail & Related papers (2023-06-04T08:53:27Z) - High Accuracy Uncertainty-Aware Interatomic Force Modeling with
Equivariant Bayesian Neural Networks [3.028098724882708]
We introduce a new Monte Carlo Markov chain sampling algorithm for learning interatomic forces.
In addition, we introduce a new neural network model based on the NequIP architecture and demonstrate that, when combined with our novel sampling algorithm, we obtain predictions with state-of-the-art accuracy as well as a good measure of uncertainty.
arXiv Detail & Related papers (2023-04-05T10:39:38Z) - Quantifying uncertainty for deep learning based forecasting and
flow-reconstruction using neural architecture search ensembles [0.8258451067861933]
We present an automated approach to deep neural network (DNN) discovery and demonstrate how this may also be utilized for ensemble-based uncertainty quantification.
We highlight how the proposed method not only discovers high-performing neural network ensembles for our tasks, but also quantifies uncertainty seamlessly.
We demonstrate the feasibility of this framework for two tasks - forecasting from historical data and flow reconstruction from sparse sensors for the sea-surface temperature.
arXiv Detail & Related papers (2023-02-20T03:57:06Z) - Improved Tomographic Estimates by Specialised Neural Networks [0.0]
We show that a neural network (NN) can improve the tomographic estimate of parameters by including a convolutional stage.
We demonstrate that a stable and reliable operation is achievable by training the network only with simulated data.
arXiv Detail & Related papers (2022-11-21T17:15:23Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Stochastic Recurrent Neural Network for Multistep Time Series
Forecasting [0.0]
We leverage advances in deep generative models and the concept of state space models to propose an adaptation of the recurrent neural network for time series forecasting.
Our model preserves the architectural workings of a recurrent neural network for which all relevant information is encapsulated in its hidden states, and this flexibility allows our model to be easily integrated into any deep architecture for sequential modelling.
arXiv Detail & Related papers (2021-04-26T01:43:43Z) - Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks [77.34726150561087]
We introduce Gradient Markov Descent (SMGD), a discrete optimization method applicable to training quantized neural networks.
We provide theoretical guarantees of algorithm performance as well as encouraging numerical results.
arXiv Detail & Related papers (2020-08-25T15:48:15Z) - Multi-Sample Online Learning for Probabilistic Spiking Neural Networks [43.8805663900608]
Spiking Neural Networks (SNNs) capture some of the efficiency of biological brains for inference and learning.
This paper introduces an online learning rule based on generalized expectation-maximization (GEM)
Experimental results on structured output memorization and classification on a standard neuromorphic data set demonstrate significant improvements in terms of log-likelihood, accuracy, and calibration.
arXiv Detail & Related papers (2020-07-23T10:03:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.