Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks
- URL: http://arxiv.org/abs/2008.11117v2
- Date: Tue, 22 Dec 2020 15:48:20 GMT
- Title: Stochastic Markov Gradient Descent and Training Low-Bit Neural Networks
- Authors: Jonathan Ashbrock, Alexander M. Powell
- Abstract summary: We introduce Gradient Markov Descent (SMGD), a discrete optimization method applicable to training quantized neural networks.
We provide theoretical guarantees of algorithm performance as well as encouraging numerical results.
- Score: 77.34726150561087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The massive size of modern neural networks has motivated substantial recent
interest in neural network quantization. We introduce Stochastic Markov
Gradient Descent (SMGD), a discrete optimization method applicable to training
quantized neural networks. The SMGD algorithm is designed for settings where
memory is highly constrained during training. We provide theoretical guarantees
of algorithm performance as well as encouraging numerical results.
Related papers
- Peer-to-Peer Learning Dynamics of Wide Neural Networks [10.179711440042123]
We provide an explicit, non-asymptotic characterization of the learning dynamics of wide neural networks trained using popularDGD algorithms.
We validate our analytical results by accurately predicting error and error and for classification tasks.
arXiv Detail & Related papers (2024-09-23T17:57:58Z) - Enhanced quantum state preparation via stochastic prediction of neural
network [0.8287206589886881]
In this paper, we explore an intriguing avenue for enhancing algorithm effectiveness through exploiting the knowledge blindness of neural network.
Our approach centers around a machine learning algorithm utilized for preparing arbitrary quantum states in a semiconductor double quantum dot system.
By leveraging prediction generated by the neural network, we are able to guide the optimization process to escape local optima.
arXiv Detail & Related papers (2023-07-27T09:11:53Z) - Low Precision Quantization-aware Training in Spiking Neural Networks
with Differentiable Quantization Function [0.5046831208137847]
This work aims to bridge the gap between recent progress in quantized neural networks and spiking neural networks.
It presents an extensive study on the performance of the quantization function, represented as a linear combination of sigmoid functions.
The presented quantization function demonstrates the state-of-the-art performance on four popular benchmarks.
arXiv Detail & Related papers (2023-05-30T09:42:05Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Low-bit Quantization of Recurrent Neural Network Language Models Using
Alternating Direction Methods of Multipliers [67.688697838109]
This paper presents a novel method to train quantized RNNLMs from scratch using alternating direction methods of multipliers (ADMM)
Experiments on two tasks suggest the proposed ADMM quantization achieved a model size compression factor of up to 31 times over the full precision baseline RNNLMs.
arXiv Detail & Related papers (2021-11-29T09:30:06Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - A Supervised Learning Algorithm for Multilayer Spiking Neural Networks
Based on Temporal Coding Toward Energy-Efficient VLSI Processor Design [2.6872737601772956]
Spiking neural networks (SNNs) are brain-inspired mathematical models with the ability to process information in the form of spikes.
We propose a novel supervised learning algorithm for SNNs based on temporal coding.
arXiv Detail & Related papers (2020-01-08T03:37:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.