Unsupervised Object Detection with Theoretical Guarantees
- URL: http://arxiv.org/abs/2406.07284v2
- Date: Thu, 24 Oct 2024 08:09:47 GMT
- Title: Unsupervised Object Detection with Theoretical Guarantees
- Authors: Marian Longa, João F. Henriques,
- Abstract summary: We develop an unsupervised object detection architecture and prove that the learned variables correspond to the true object positions up to small shifts.
We validate our theoretical predictions up to a precision of individual pixels.
Unlike current SOTA object detection methods, our method's prediction errors always lie within our theoretical bounds.
- Score: 15.779730667509915
- License:
- Abstract: Unsupervised object detection using deep neural networks is typically a difficult problem with few to no guarantees about the learned representation. In this work we present the first unsupervised object detection method that is theoretically guaranteed to recover the true object positions up to quantifiable small shifts. We develop an unsupervised object detection architecture and prove that the learned variables correspond to the true object positions up to small shifts related to the encoder and decoder receptive field sizes, the object sizes, and the widths of the Gaussians used in the rendering process. We perform detailed analysis of how the error depends on each of these variables and perform synthetic experiments validating our theoretical predictions up to a precision of individual pixels. We also perform experiments on CLEVR-based data and show that, unlike current SOTA object detection methods (SAM, CutLER), our method's prediction errors always lie within our theoretical bounds. We hope that this work helps open up an avenue of research into object detection methods with theoretical guarantees.
Related papers
- On the Inherent Robustness of One-Stage Object Detection against Out-of-Distribution Data [6.7236795813629]
We propose a novel detection algorithm for detecting unknown objects in image data.
It exploits supervised dimensionality reduction techniques to mitigate the effects of the curse of dimensionality on the features extracted by the model.
It utilizes high-resolution feature maps to identify potential unknown objects in an unsupervised fashion.
arXiv Detail & Related papers (2024-11-07T10:15:25Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Fast and Accurate Object Detection on Asymmetrical Receptive Field [0.0]
This article proposes methods for improving object detection accuracy from the perspective of changing receptive fields.
The structure of the head part of YOLOv5 is modified by adding asymmetrical pooling layers.
The performances of the new model in this article are compared with original YOLOv5 model and analyzed from several parameters.
arXiv Detail & Related papers (2023-03-15T23:59:18Z) - A Review of Uncertainty Calibration in Pretrained Object Detectors [5.440028715314566]
We investigate the uncertainty calibration properties of different pretrained object detection architectures in a multi-class setting.
We propose a framework to ensure a fair, unbiased, and repeatable evaluation.
We deliver novel insights into why poor detector calibration emerges.
arXiv Detail & Related papers (2022-10-06T14:06:36Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3D object detection is an important capability needed in various practical applications such as driver assistance systems.
Monocular 3D detection, as an economical solution compared to conventional settings relying on binocular vision or LiDAR, has drawn increasing attention recently but still yields unsatisfactory results.
This paper first presents a systematic study on this problem and observes that the current monocular 3D detection problem can be simplified as an instance depth estimation problem.
arXiv Detail & Related papers (2021-07-29T16:30:33Z) - ODDObjects: A Framework for Multiclass Unsupervised Anomaly Detection on
Masked Objects [0.0]
ODDObjects is designed to detect anomalies of various categories using unsupervised autoencoders trained on COCO-style datasets.
The framework extends previous work on anomaly detection with autoencoders, comparing state-of-the-art models trained on object recognition datasets.
arXiv Detail & Related papers (2021-04-26T01:13:28Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - End-to-End Object Detection with Transformers [88.06357745922716]
We present a new method that views object detection as a direct set prediction problem.
Our approach streamlines the detection pipeline, effectively removing the need for many hand-designed components.
The main ingredients of the new framework, called DEtection TRansformer or DETR, are a set-based global loss.
arXiv Detail & Related papers (2020-05-26T17:06:38Z) - BiDet: An Efficient Binarized Object Detector [96.19708396510894]
We propose a binarized neural network learning method called BiDet for efficient object detection.
Our BiDet fully utilizes the representational capacity of the binary neural networks for object detection by redundancy removal.
Our method outperforms the state-of-the-art binary neural networks by a sizable margin.
arXiv Detail & Related papers (2020-03-09T08:16:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.