論文の概要: Rethinking the impact of noisy labels in graph classification: A utility and privacy perspective
- arxiv url: http://arxiv.org/abs/2406.07314v1
- Date: Tue, 11 Jun 2024 14:44:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 15:34:38.961041
- Title: Rethinking the impact of noisy labels in graph classification: A utility and privacy perspective
- Title(参考訳): グラフ分類におけるノイズラベルの影響を再考する:ユーティリティとプライバシの観点から
- Authors: De Li, Xianxian Li, Zeming Gan, Qiyu Li, Bin Qu, Jinyan Wang,
- Abstract要約: データプライバシとモデルユーティリティの観点から,ノイズラベルがグラフ分類に与える影響を測定した。
雑音ラベル付きグラフ分類を用いた頑健なグラフニューラルネットワーク手法を提案する。
- 参考スコア(独自算出の注目度): 5.562183488165933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks based on message-passing mechanisms have achieved advanced results in graph classification tasks. However, their generalization performance degrades when noisy labels are present in the training data. Most existing noisy labeling approaches focus on the visual domain or graph node classification tasks and analyze the impact of noisy labels only from a utility perspective. Unlike existing work, in this paper, we measure the effects of noise labels on graph classification from data privacy and model utility perspectives. We find that noise labels degrade the model's generalization performance and enhance the ability of membership inference attacks on graph data privacy. To this end, we propose the robust graph neural network approach with noisy labeled graph classification. Specifically, we first accurately filter the noisy samples by high-confidence samples and the first feature principal component vector of each class. Then, the robust principal component vectors and the model output under data augmentation are utilized to achieve noise label correction guided by dual spatial information. Finally, supervised graph contrastive learning is introduced to enhance the embedding quality of the model and protect the privacy of the training graph data. The utility and privacy of the proposed method are validated by comparing twelve different methods on eight real graph classification datasets. Compared with the state-of-the-art methods, the RGLC method achieves at most and at least 7.8% and 0.8% performance gain at 30% noisy labeling rate, respectively, and reduces the accuracy of privacy attacks to below 60%.
- Abstract(参考訳): メッセージパッシング機構に基づくグラフニューラルネットワークは、グラフ分類タスクにおいて高度な結果を得た。
しかし、トレーニングデータにノイズラベルが存在する場合、一般化性能は低下する。
既存のノイズラベリングアプローチのほとんどは、視覚領域やグラフノードの分類タスクに注目し、ユーティリティの観点からのみノイズラベリングの影響を分析する。
本稿では,従来の研究と異なり,データプライバシやモデルユーティリティの観点から,ノイズラベルがグラフ分類に与える影響を計測する。
ノイズラベルはモデルの一般化性能を低下させ,グラフデータプライバシに対するメンバシップ推論攻撃の可能性を高める。
この目的のために,雑音ラベル付きグラフ分類を用いた頑健なグラフニューラルネットワーク手法を提案する。
具体的には、まず、高信頼サンプルと各クラスの最初の特徴主成分ベクトルによってノイズのあるサンプルを正確にフィルタリングする。
そして、ロバストな主成分ベクトルとデータ拡張時のモデル出力を利用して、二重空間情報で案内されるノイズラベル補正を実現する。
最後に、モデルの埋め込み品質を高め、トレーニンググラフデータのプライバシを保護するために、教師付きグラフコントラスト学習を導入する。
提案手法の有用性とプライバシは,8つの実グラフ分類データセット上で12種類の異なる手法を比較して検証する。
最先端の手法と比較して、RGLC法は少なくとも7.8%と0.8%のパフォーマンス向上を30%ノイズラベルレートで達成し、プライバシー攻撃の精度を60%以下に下げる。
関連論文リスト
- Mitigating Label Noise on Graph via Topological Sample Selection [72.86862597508077]
トポロジ情報を活用することで,グラフ内の情報的サンプル選択プロセスを促進できる$textitTopological Sample Selection$ (TSS)法を提案する。
提案手法は,対象のクリーン分布下での予測されるリスク上限の上限を最小化し,最先端のベースラインと比較して,提案手法の優位性を実験的に示す。
論文 参考訳(メタデータ) (2024-03-04T11:24:51Z) - ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
本稿では, ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) という手法を提案する。
ERASEは、プロトタイプの擬似ラベルとプロパゲーションされた識別ラベルを組み合わせて、表現をエラーレジリエンスで更新する。
提案手法は, 広い雑音レベルにおいて, 複数のベースラインをクリアマージンで上回り, 高いスケーラビリティを享受できる。
論文 参考訳(メタデータ) (2023-12-13T17:59:07Z) - Resurrecting Label Propagation for Graphs with Heterophily and Label Noise [40.11022005996222]
ラベルノイズは、ディープニューラルネットワークの一般化能力を著しく低下させるため、大規模なデータセットでは一般的な課題である。
任意のヘテロフィリーの文脈におけるグラフラベルノイズについて検討し、ノイズラベルの修正とラベルの割り当てを未ラベルノードで行うことを目的とした。
R2LP$は、3つのステップからなる反復アルゴリズムである。(1) グラフを再構成してホモフィリプロパティを復元し、(2) ラベルの伝搬を利用してノイズラベルを修正し、(3) 信頼度の高いラベルを選択して次のイテレーションに保持する。
論文 参考訳(メタデータ) (2023-10-25T11:28:26Z) - Local Graph Clustering with Noisy Labels [8.142265733890918]
本稿では,ノード情報追加のプロキシとしてノイズの多いノードラベルを用いた局所グラフクラスタリングを提案する。
この設定では、ノードはクラスタのアフィリエイトに基づいて初期バイナリラベルを受け取る。
属性グラフから数個のサンプルを用いて,信頼性の高いノードラベルが得られることを示す。
論文 参考訳(メタデータ) (2023-10-12T04:37:15Z) - Learning on Graphs under Label Noise [5.909452203428086]
我々は,ラベルノイズのあるグラフ上での学習問題を解決するために,CGNN(Consistent Graph Neural Network)と呼ばれる新しいアプローチを開発した。
具体的には、グラフの対比学習を正規化用語として採用し、拡張ノードの2つのビューが一貫した表現を持つように促進する。
グラフ上の雑音ラベルを検出するために,ホモフィリー仮定に基づくサンプル選択手法を提案する。
論文 参考訳(メタデータ) (2023-06-14T01:38:01Z) - Learning to Aggregate and Refine Noisy Labels for Visual Sentiment
Analysis [69.48582264712854]
本研究では,頑健な視覚的感情分析を行うための頑健な学習手法を提案する。
本手法は,トレーニング中にノイズラベルを集約・フィルタリングするために外部メモリに依存している。
公開データセットを用いたラベルノイズを用いた視覚的感情分析のベンチマークを構築した。
論文 参考訳(メタデータ) (2021-09-15T18:18:28Z) - Unified Robust Training for Graph NeuralNetworks against Label Noise [12.014301020294154]
半監督設定でノイズの多いラベルをグラフ上で学習するための新しいフレームワークである UnionNET を提案します。
提案手法は,GNNを頑健に訓練し,ラベル修正を同時に行うための統一的なソリューションを提供する。
論文 参考訳(メタデータ) (2021-03-05T01:17:04Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
グラフ組み込み数ショット学習に関する包括的な研究を紹介します。
本稿では,ラベル間のグラフ情報の組み込みによる影響をより深く理解できるグラフ正規化手法を提案する。
提案手法は,Mini-ImageNetで最大2%,ImageNet-FSで6.7%の性能向上を実現する。
論文 参考訳(メタデータ) (2021-02-14T05:28:13Z) - Improving Classification Accuracy with Graph Filtering [9.153817737157366]
提案されたグラフフィルタリング手法は、平均を維持しながらクラス内分散を減らす効果があることを示した。
本手法は一般にすべての分類問題に適用されるが,クラス内ノイズが小さいサンプル選択に大きく影響しうる場合において特に有用である。
論文 参考訳(メタデータ) (2021-01-12T22:51:55Z) - Attention-Aware Noisy Label Learning for Image Classification [97.26664962498887]
大規模ラベル付きサンプルで学習した深層畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンにおいて顕著な進歩を遂げている。
大量のラベル付きビジュアルデータを取得する最も安価な方法は、Flickrのようなユーザーが提供するラベルでウェブサイトからクロールすることである。
本稿では,潜在的なラベルノイズのあるデータセットに基づいて学習したネットワークの識別能力を向上させるために,注目に敏感なラベル学習手法を提案する。
論文 参考訳(メタデータ) (2020-09-30T15:45:36Z) - Contrastive and Generative Graph Convolutional Networks for Graph-based
Semi-Supervised Learning [64.98816284854067]
グラフベースのSemi-Supervised Learning (SSL)は、少数のラベル付きデータのラベルをグラフ経由で残りの巨大なラベル付きデータに転送することを目的としている。
本稿では,データ類似性とグラフ構造を両立させ,監視信号の強化を図るため,新しいGCNベースのSSLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-15T13:59:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。