論文の概要: A Framework for Efficient Model Evaluation through Stratification, Sampling, and Estimation
- arxiv url: http://arxiv.org/abs/2406.07320v1
- Date: Tue, 11 Jun 2024 14:49:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 15:34:38.952795
- Title: A Framework for Efficient Model Evaluation through Stratification, Sampling, and Estimation
- Title(参考訳): 階層化, サンプリング, 推定による効率的なモデル評価のためのフレームワーク
- Authors: Riccardo Fogliato, Pratik Patil, Mathew Monfort, Pietro Perona,
- Abstract要約: 本稿では,階層化,サンプリング,推定を含むモデル評価のためのフレームワークを提案する。
モデル性能の正確な予測に基づいて,k平均クラスタリングによる成層化を行うことで,効率的に推定できることを示す。
また、データセットのラベル付けされていない部分におけるモデル精度の予測を利用するモデル支援推定器は、一般的に従来の推定値よりも効率的であることがわかった。
- 参考スコア(独自算出の注目度): 17.351089059392674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model performance evaluation is a critical and expensive task in machine learning and computer vision. Without clear guidelines, practitioners often estimate model accuracy using a one-time random selection of the data. However, by employing tailored sampling and estimation strategies, one can obtain more precise estimates and reduce annotation costs. In this paper, we propose a statistical framework for model evaluation that includes stratification, sampling, and estimation components. We examine the statistical properties of each component and evaluate their efficiency (precision). One key result of our work is that stratification via k-means clustering based on accurate predictions of model performance yields efficient estimators. Our experiments on computer vision datasets show that this method consistently provides more precise accuracy estimates than the traditional simple random sampling, even with substantial efficiency gains of 10x. We also find that model-assisted estimators, which leverage predictions of model accuracy on the unlabeled portion of the dataset, are generally more efficient than the traditional estimates based solely on the labeled data.
- Abstract(参考訳): モデル性能評価は、機械学習とコンピュータビジョンにおいて重要で高価なタスクである。
明確なガイドラインがなければ、実践者はデータの1回のランダムな選択を使ってモデルの精度を見積もることが多い。
しかし, 適切なサンプリングと推定手法を用いることで, より正確な推定値を得ることができ, アノテーションのコストを低減できる。
本稿では,階層化,サンプリング,推定を含むモデル評価のための統計的枠組みを提案する。
本研究では,各成分の統計特性について検討し,その効率性(精度)を評価する。
我々の研究の重要な成果の1つは、モデル性能の正確な予測に基づくk平均クラスタリングによる成層化が効率的な推定を行うことである。
計算機ビジョンデータセットを用いた実験により,本手法は従来の単純な乱数サンプリングよりも精度の高い推定値を提供し,精度は10倍に向上した。
また、データセットのラベル付けされていない部分におけるモデル精度の予測を利用するモデル支援推定器は、ラベル付きデータのみに基づく従来の推定よりも一般的に効率的であることがわかった。
関連論文リスト
- On Evaluation of Vision Datasets and Models using Human Competency Frameworks [20.802372291783488]
アイテム応答理論(IRT)は、モデルと各データセット項目のアンサンブルに対して解釈可能な潜在パラメータを推論するフレームワークである。
モデルキャリブレーションを評価し、情報的データサブセットを選択し、コンピュータビジョンにおけるモデルとデータセットを解析・比較するための潜在パラメータの有用性を実証する。
論文 参考訳(メタデータ) (2024-09-06T06:20:11Z) - Source-Free Domain-Invariant Performance Prediction [68.39031800809553]
本研究では,不確実性に基づく推定を主軸としたソースフリー手法を提案する。
オブジェクト認識データセットのベンチマーク実験により、既存のソースベースの手法は、限られたソースサンプルの可用性で不足していることが判明した。
提案手法は,現在の最先端のソースフリーおよびソースベース手法よりも優れており,ドメイン不変性能推定の有効性が確認されている。
論文 参考訳(メタデータ) (2024-08-05T03:18:58Z) - Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - Learning to be a Statistician: Learned Estimator for Number of Distinct
Values [54.629042119819744]
列内の異なる値の数(NDV)を推定することは、データベースシステムにおける多くのタスクに有用である。
本研究では、ランダム(オンライン/オフライン)サンプルから正確なNDV推定を導出する方法に焦点を当てる。
教師付き学習フレームワークにおいて,NDV推定タスクを定式化し,モデルを推定対象として学習することを提案する。
論文 参考訳(メタデータ) (2022-02-06T15:42:04Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Model-based metrics: Sample-efficient estimates of predictive model
subpopulation performance [11.994417027132807]
健康状態の表示、診断、予測のために現在一般的に開発されている機械学習モデル$-$は、様々なパフォーマンス指標で評価される。
サブ集団のパフォーマンスメトリクスは、通常、そのサブグループのデータのみを使用して計算されるため、より小さなグループに対する分散推定が高くなる。
本稿では,予測モデルスコアの条件分布を記述した評価モデル$-$を用いて,モデルベース計量(MBM)の推定値を生成する。
論文 参考訳(メタデータ) (2021-04-25T19:06:34Z) - Learning Prediction Intervals for Model Performance [1.433758865948252]
モデル性能の予測間隔を計算する手法を提案する。
我々は,幅広いドリフト条件におけるアプローチを評価し,競合ベースラインよりも大幅に改善することを示す。
論文 参考訳(メタデータ) (2020-12-15T21:32:03Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
本稿では,モデルが点予測ではなく,その予測に対して不確実な推定を行うような,頑健な予測推論の手順について述べる。
本稿では, トレーニング集団の周囲に$f$-divergence のボールを用いて, 任意のテスト分布に対して適切なカバレッジレベルを与える予測セットを生成する手法を提案する。
私たちの方法論の重要な構成要素は、将来のデータシフトの量を見積り、それに対する堅牢性を構築することです。
論文 参考訳(メタデータ) (2020-08-10T17:09:16Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。