論文の概要: Beyond Training: Optimizing Reinforcement Learning Based Job Shop Scheduling Through Adaptive Action Sampling
- arxiv url: http://arxiv.org/abs/2406.07325v1
- Date: Tue, 11 Jun 2024 14:59:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 15:34:38.944692
- Title: Beyond Training: Optimizing Reinforcement Learning Based Job Shop Scheduling Through Adaptive Action Sampling
- Title(参考訳): トレーニングを超えて - 適応的アクションサンプリングによる強化学習に基づくジョブショップスケジューリングの最適化
- Authors: Constantin Waubert de Puiseau, Christian Dörpelkus, Jannik Peters, Hasan Tercan, Tobias Meisen,
- Abstract要約: 推論における訓練深部強化学習(DRL)エージェントの最適利用について検討した。
我々の研究は、探索アルゴリズムと同様に、訓練されたDRLエージェントの利用は許容できる計算予算に依存するべきであるという仮説に基づいている。
そこで本稿では, 与えられた多数の解と任意の訓練されたエージェントに対して最適なパラメータ化を求めるアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 10.931466852026663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learned construction heuristics for scheduling problems have become increasingly competitive with established solvers and heuristics in recent years. In particular, significant improvements have been observed in solution approaches using deep reinforcement learning (DRL). While much attention has been paid to the design of network architectures and training algorithms to achieve state-of-the-art results, little research has investigated the optimal use of trained DRL agents during inference. Our work is based on the hypothesis that, similar to search algorithms, the utilization of trained DRL agents should be dependent on the acceptable computational budget. We propose a simple yet effective parameterization, called $\delta$-sampling that manipulates the trained action vector to bias agent behavior towards exploration or exploitation during solution construction. By following this approach, we can achieve a more comprehensive coverage of the search space while still generating an acceptable number of solutions. In addition, we propose an algorithm for obtaining the optimal parameterization for such a given number of solutions and any given trained agent. Experiments extending existing training protocols for job shop scheduling problems with our inference method validate our hypothesis and result in the expected improvements of the generated solutions.
- Abstract(参考訳): スケジューリング問題に対する学習された建設ヒューリスティックスは、近年、確立された問題解決者やヒューリスティックと競争力が高まっている。
特に, 深部強化学習(DRL)を用いた解法では, 顕著な改善が見られた。
ネットワークアーキテクチャやトレーニングアルゴリズムの設計に多くの注意が払われているが、推論におけるDRLエージェントの最適使用についてはほとんど研究されていない。
我々の研究は、探索アルゴリズムと同様に、訓練されたDRLエージェントの利用は許容できる計算予算に依存するべきであるという仮説に基づいている。
本稿では, 簡単なパラメータ化法である$\delta$-samplingを提案する。
このアプローチに従うことで、検索空間をより包括的にカバーできると同時に、許容可能な数のソリューションを生成できる。
さらに, 与えられた多数の解と任意の訓練されたエージェントに対して最適なパラメータ化を求めるアルゴリズムを提案する。
ジョブショップスケジューリング問題に対する既存のトレーニングプロトコルを,推測手法を用いて拡張した実験により,我々の仮説が検証され,生成したソリューションの期待された改善がもたらされる。
関連論文リスト
- A Reinforcement Learning-assisted Genetic Programming Algorithm for Team
Formation Problem Considering Person-Job Matching [70.28786574064694]
解の質を高めるために強化学習支援遺伝的プログラミングアルゴリズム(RL-GP)を提案する。
効率的な学習を通じて得られる超ヒューリスティックなルールは、プロジェクトチームを形成する際の意思決定支援として利用することができる。
論文 参考訳(メタデータ) (2023-04-08T14:32:12Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Online Control of Adaptive Large Neighborhood Search using Deep Reinforcement Learning [4.374837991804085]
DR-ALNSと呼ばれる深層強化学習に基づくアプローチを導入し、演算子を選択し、パラメータを調整し、検索全体を通して受け入れ基準を制御する。
提案手法は,IJCAIコンペティションで提示されたオリエンテーリングウェイトと時間窓の問題に対して評価する。
その結果,本手法はバニラALNSよりも優れており,ALNSはベイジアン最適化と2つの最先端DRLアプローチに適合していることがわかった。
論文 参考訳(メタデータ) (2022-11-01T21:33:46Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Sample-Efficient, Exploration-Based Policy Optimisation for Routing
Problems [2.6782615615913348]
本稿では,エントロピーに基づく新しい強化学習手法を提案する。
さらに、我々は、期待したリターンを最大化する、政治以外の強化学習手法を設計する。
我々のモデルは様々な経路問題に一般化可能であることを示す。
論文 参考訳(メタデータ) (2022-05-31T09:51:48Z) - An Actor-Critic Method for Simulation-Based Optimization [6.261751912603047]
実現可能な空間から最適な設計を選択するためのシミュレーションに基づく最適化問題に焦点をあてる。
政策探索問題としてサンプリングプロセスを定式化し、強化学習(RL)の観点から解を求める。
いくつかの実験は提案アルゴリズムの有効性を検証するために設計されている。
論文 参考訳(メタデータ) (2021-10-31T09:04:23Z) - Few-shot Quality-Diversity Optimization [50.337225556491774]
品質多様性(QD)の最適化は、強化学習における知覚的最小値とスパース報酬を扱う上で効果的なツールであることが示されている。
本稿では,タスク分布の例から,パラメータ空間の最適化によって得られる経路の情報を利用して,未知の環境でQD手法を初期化する場合,数発の適応が可能であることを示す。
ロボット操作とナビゲーションベンチマークを用いて、疎密な報酬設定と密集した報酬設定の両方で実施された実験は、これらの環境でのQD最適化に必要な世代数を著しく削減することを示している。
論文 参考訳(メタデータ) (2021-09-14T17:12:20Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
本稿では、強化学習(RL)と従来の運用研究(OR)アルゴリズムを組み合わせた2段階のフレームワークを開発する。
スケジューリング問題は,有限マルコフ決定過程 (MDP) と混合整数計画過程 (mixed-integer programming process) の2段階で解決される。
その結果,本アルゴリズムは,アジャイルな地球観測衛星スケジューリング問題に対して,安定かつ効率的に十分なスケジューリング計画を得ることができた。
論文 参考訳(メタデータ) (2021-03-10T03:16:12Z) - Adaptive Serverless Learning [114.36410688552579]
本研究では,データから学習率を動的に計算できる適応型分散学習手法を提案する。
提案アルゴリズムは, 作業者数に対して線形高速化が可能であることを示す。
通信効率のオーバーヘッドを低減するため,通信効率のよい分散訓練手法を提案する。
論文 参考訳(メタデータ) (2020-08-24T13:23:02Z) - Learning 2-opt Heuristics for the Traveling Salesman Problem via Deep
Reinforcement Learning [2.4565068569913384]
本研究では,2オプト演算子に基づく局所的な探索勾配を深層強化学習により学習することを提案する。
学習したポリシは、ランダムな初期解よりも改善でき、従来の最先端のディープラーニング手法よりも高速に、ほぼ最適解にアプローチできることを示す。
論文 参考訳(メタデータ) (2020-04-03T14:51:54Z) - Reinforcement Learning for Combinatorial Optimization: A Survey [12.323976053967066]
最適化問題を解決する多くの伝統的なアルゴリズムは、解決を逐次構築する手工芸品を使用する。
強化学習(Reinforcement Learning, RL)は、エージェントを監督的または自己監督的な方法で訓練することにより、これらの検索を自動化する優れた代替手段を提案する。
論文 参考訳(メタデータ) (2020-03-07T16:19:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。