Machine Learning-Based Channel Prediction for RIS-assisted MIMO Systems With Channel Aging
- URL: http://arxiv.org/abs/2406.07387v1
- Date: Thu, 9 May 2024 19:45:49 GMT
- Title: Machine Learning-Based Channel Prediction for RIS-assisted MIMO Systems With Channel Aging
- Authors: Nipuni Ginige, Arthur Sousa de Sena, Nurul Huda Mahmood, Nandana Rajatheva, Matti Latva-aho,
- Abstract summary: Reconfigurable intelligent surfaces (RISs) have emerged as a promising technology to enhance the performance of sixth-generation (6G) and beyond communication systems.
The passive nature of RISs and their large number of reflecting elements pose challenges to the channel estimation process.
We propose an extended channel estimation framework for RIS-assisted multiple-input multiple-output (MIMO) systems based on a convolutional neural network (CNN) integrated with an autoregressive (AR) predictor.
- Score: 11.867884158309373
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reconfigurable intelligent surfaces (RISs) have emerged as a promising technology to enhance the performance of sixth-generation (6G) and beyond communication systems. The passive nature of RISs and their large number of reflecting elements pose challenges to the channel estimation process. The associated complexity further escalates when the channel coefficients are fast-varying as in scenarios with user mobility. In this paper, we propose an extended channel estimation framework for RIS-assisted multiple-input multiple-output (MIMO) systems based on a convolutional neural network (CNN) integrated with an autoregressive (AR) predictor. The implemented framework is designed for identifying the aging pattern and predicting enhanced estimates of the wireless channels in correlated fast-fading environments. Insightful simulation results demonstrate that our proposed CNN-AR approach is robust to channel aging, exhibiting a high-precision estimation accuracy. The results also show that our approach can achieve high spectral efficiency and low pilot overhead compared to traditional methods.
Related papers
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Efficient Deep Unfolding for SISO-OFDM Channel Estimation [0.0]
It is possible to perform SISO-OFDM channel estimation using sparse recovery techniques.
In this paper, an unfolded neural network is used to lighten this constraint.
Its unsupervised online learning allows to learn the system's imperfections in order to enhance the estimation performance.
arXiv Detail & Related papers (2022-10-11T11:29:54Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Time-Varying Channel Prediction for RIS-Assisted MU-MISO Networks via
Deep Learning [15.444805225936992]
Reconfigurable intelligent surface (RIS) has become a promising technology to improve the signal transmission quality of wireless communications.
However, accurate, low-latency and low-pilot-overhead channel state information (CSI) acquisition remains a considerable challenge in RIS-assisted systems.
We propose a three-stage joint channel decomposition and prediction framework to require CSI.
arXiv Detail & Related papers (2021-11-09T07:26:51Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Untrained DNN for Channel Estimation of RIS-Assisted Multi-User OFDM
System with Hardware Impairments [11.012356843958282]
This paper introduces a deep learning-based, low complexity channel estimator for the RIS-assisted multi-user single-input-multiple-output (SIMO) frequency division multiplexing (OFDM) system.
We show that our proposed method has high performance in terms of accuracy and low complexity compared to conventional methods.
arXiv Detail & Related papers (2021-07-13T07:30:43Z) - Channel Estimation for RIS-Empowered Multi-User MISO Wireless
Communications [35.207416803526876]
We present two iterative estimation algorithms for the channels between the base station and RIS.
One is based on alternating least squares (ALS), while the other uses vector approximate message passing to iteratively reconstruct two unknown channels.
We also discuss the downlink achievable sum rate with estimated channels and different precoding schemes for the base station.
arXiv Detail & Related papers (2020-08-04T10:53:51Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z) - Millimeter Wave Communications with an Intelligent Reflector:
Performance Optimization and Distributional Reinforcement Learning [119.97450366894718]
A novel framework is proposed to optimize the downlink multi-user communication of a millimeter wave base station.
A channel estimation approach is developed to measure the channel state information (CSI) in real-time.
A distributional reinforcement learning (DRL) approach is proposed to learn the optimal IR reflection and maximize the expectation of downlink capacity.
arXiv Detail & Related papers (2020-02-24T22:18:54Z) - Data-Driven Symbol Detection via Model-Based Machine Learning [117.58188185409904]
We review a data-driven framework to symbol detection design which combines machine learning (ML) and model-based algorithms.
In this hybrid approach, well-known channel-model-based algorithms are augmented with ML-based algorithms to remove their channel-model-dependence.
Our results demonstrate that these techniques can yield near-optimal performance of model-based algorithms without knowing the exact channel input-output statistical relationship.
arXiv Detail & Related papers (2020-02-14T06:58:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.