論文の概要: Large Language Models are Limited in Out-of-Context Knowledge Reasoning
- arxiv url: http://arxiv.org/abs/2406.07393v3
- Date: Fri, 27 Sep 2024 11:46:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 01:33:31.364986
- Title: Large Language Models are Limited in Out-of-Context Knowledge Reasoning
- Title(参考訳): 文脈外知識推論における大規模言語モデル
- Authors: Peng Hu, Changjiang Gao, Ruiqi Gao, Jiajun Chen, Shujian Huang,
- Abstract要約: 大規模言語モデル (LLMs) は、文脈内推論の実行において広範な知識と強力な能力を持っている。
本稿では、複数の知識を組み合わせて新しい知識を推論する、文脈外知識推論(OCKR)という、文脈外推論の重要な側面に焦点を当てる。
- 参考スコア(独自算出の注目度): 65.72847298578071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning. However, previous work challenges their out-of-context reasoning ability, i.e., the ability to infer information from their training data, instead of from the context or prompt. This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge. We designed a synthetic dataset with seven representative OCKR tasks to systematically assess the OCKR capabilities of LLMs. Using this dataset, we evaluated several LLMs and discovered that their proficiency in this aspect is limited, regardless of whether the knowledge is trained in a separate or adjacent training settings. Moreover, training the model to reason with reasoning examples does not result in significant improvement, while training the model to perform explicit knowledge retrieval helps for retrieving attribute knowledge but not the relation knowledge, indicating that the model's limited OCKR capabilities are due to difficulties in knowledge retrieval. Furthermore, we treat cross-lingual knowledge transfer as a distinct form of OCKR, and evaluate this ability. Our results show that the evaluated model also exhibits limited ability in transferring knowledge across languages.
- Abstract(参考訳): 大規模言語モデル (LLMs) は、文脈内推論の実行において広範な知識と強力な能力を持っている。
しかし、以前の作業は、文脈やプロンプトではなく、トレーニングデータから情報を推測する能力など、文脈外の推論能力に挑戦する。
本稿では、複数の知識を組み合わせて新しい知識を推論する、文脈外知識推論(OCKR)という、文脈外推論の重要な側面に焦点を当てる。
我々は,LLMのOCKR能力を体系的に評価する7つのOCKRタスクを用いた合成データセットを設計した。
このデータセットを用いて、複数のLCMを評価し、知識が個別または隣接のトレーニング環境で訓練されているかどうかに関わらず、その側面における習熟度が制限されていることを発見した。
さらに、推論例による推論のためのモデルをトレーニングしても大きな改善は得られず、一方、明示的な知識検索を行うためのモデルをトレーニングすることは、属性知識の検索に役立ち、関係知識の検索には役立ち、モデルの限定的なOCKR能力は知識検索の難しさによるものであることを示す。
さらに,言語間知識伝達をOCKRの別形態として扱い,その能力を評価する。
その結果,評価モデルは言語間で知識を伝達する能力に限界があることが示唆された。
関連論文リスト
- Chain-of-Knowledge: Integrating Knowledge Reasoning into Large Language Models by Learning from Knowledge Graphs [55.317267269115845]
Chain-of-Knowledge (CoK)は知識推論のための包括的なフレームワークである。
CoKにはデータセット構築とモデル学習の両方のための方法論が含まれている。
KnowReasonで広範な実験を行う。
論文 参考訳(メタデータ) (2024-06-30T10:49:32Z) - Explainable Few-shot Knowledge Tracing [48.877979333221326]
本稿では,学生の記録から学生の知識をトラッキングし,自然言語による説明を提供する認知誘導フレームワークを提案する。
3つの広く使われているデータセットによる実験結果から、LLMは競合する深層知識追跡手法に匹敵する、あるいは優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-23T10:07:21Z) - Can Language Models Act as Knowledge Bases at Scale? [24.99538360485476]
大規模言語モデル(LLM)は、複雑なクエリに対する応答の理解と生成に顕著な習熟性を示している。
本研究は,LLMがWikidataなどの最新の知識ベース(KB)に匹敵する大規模知識を効果的に保存し,リコールし,理性を持つことができるかどうかを考察する。
論文 参考訳(メタデータ) (2024-02-22T04:20:14Z) - Is Knowledge All Large Language Models Needed for Causal Reasoning? [11.476877330365664]
本稿では,大規模言語モデル(LLM)の因果推論について,人工知能の進化における解釈可能性と信頼性を高めるために検討する。
本稿では,do-operativesを利用した新たな因果帰属モデルを提案する。
論文 参考訳(メタデータ) (2023-12-30T04:51:46Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
大規模言語モデル(LLM)は、下流の知識集約タスクのための情報検索技術より優れている。
しかし、コミュニティの懸念は、この無検閲の知識を使用することの事実と潜在的意味について多岐にわたる。
本研究では,6つの重要な視点から生成した知識を評価するために設計されたCONNERを紹介する。
論文 参考訳(メタデータ) (2023-10-11T08:22:37Z) - The Effect of Masking Strategies on Knowledge Retention by Language
Models [9.130890741447422]
本稿では,事前学習タスクが言語モデルによって捉え,忘れられた知識量に与える影響を理解することを目的とする。
我々は,実際の質問に答える能力を測定することによって,モデルの知識保持を検証した。
我々の研究結果は、あるタスクを実行する能力と同様に、そのタスクでトレーニングされた知識は、あるモデルが別のタスクを実行するように訓練されたときに忘れられることを示した。
論文 参考訳(メタデータ) (2023-06-12T15:35:23Z) - Do Large Language Models Know What They Don't Know? [74.65014158544011]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクに優れた知識を持つ。
膨大な知識にもかかわらず、LLMはそれらが適合し理解できる情報の量によって制限されている。
本研究の目的は,LLMの自己理解能力を評価することである。
論文 参考訳(メタデータ) (2023-05-29T15:30:13Z) - Knowledge Rumination for Pre-trained Language Models [77.55888291165462]
本稿では,学習前の言語モデルが外部コーパスから検索することなく,関連する潜在知識を活用できるようにするための,Knowledge Ruminationと呼ばれる新しいパラダイムを提案する。
本稿では,RoBERTa,DeBERTa,GPT-3などの言語モデルに適用する。
論文 参考訳(メタデータ) (2023-05-15T15:47:09Z) - LM-CORE: Language Models with Contextually Relevant External Knowledge [13.451001884972033]
モデルパラメータに大量の知識を格納することは、絶え間なく増加する知識とリソースの要求を考えると、準最適である、と我々は主張する。
LM-CORE - これを実現するための一般的なフレームワークで、外部の知識ソースから言語モデルのトレーニングをテキストデカップリングすることができる。
実験結果から, LM-COREは知識探索タスクにおいて, 最先端の知識強化言語モデルよりも大きく, 堅牢な性能を実現していることがわかった。
論文 参考訳(メタデータ) (2022-08-12T18:59:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。