論文の概要: MINERS: Multilingual Language Models as Semantic Retrievers
- arxiv url: http://arxiv.org/abs/2406.07424v3
- Date: Tue, 24 Sep 2024 15:43:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-09 01:33:31.359128
- Title: MINERS: Multilingual Language Models as Semantic Retrievers
- Title(参考訳): MINERS:セマンティックレトリバーとしての多言語言語モデル
- Authors: Genta Indra Winata, Ruochen Zhang, David Ifeoluwa Adelani,
- Abstract要約: 本稿では,意味検索タスクにおける多言語言語モデルの有効性を評価するためのベンチマークであるMINERSを紹介する。
我々は,200以上の多言語にわたるサンプルの検索において,LMの堅牢性を評価する包括的なフレームワークを構築した。
以上の結果から,意味論的に類似した埋め込みを検索することで,最先端のアプローチと競合する性能が得られることが示された。
- 参考スコア(独自算出の注目度): 23.686762008696547
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Words have been represented in a high-dimensional vector space that encodes their semantic similarities, enabling downstream applications such as retrieving synonyms, antonyms, and relevant contexts. However, despite recent advances in multilingual language models (LMs), the effectiveness of these models' representations in semantic retrieval contexts has not been comprehensively explored. To fill this gap, this paper introduces the MINERS, a benchmark designed to evaluate the ability of multilingual LMs in semantic retrieval tasks, including bitext mining and classification via retrieval-augmented contexts. We create a comprehensive framework to assess the robustness of LMs in retrieving samples across over 200 diverse languages, including extremely low-resource languages in challenging cross-lingual and code-switching settings. Our results demonstrate that by solely retrieving semantically similar embeddings yields performance competitive with state-of-the-art approaches, without requiring any fine-tuning.
- Abstract(参考訳): 単語は、それらの意味的類似性を符号化した高次元ベクトル空間で表現され、同義語、アントロニム、関連する文脈を検索するといった下流のアプリケーションを可能にする。
しかし、近年の多言語言語モデル(LM)の発展にもかかわらず、意味論的文脈におけるこれらのモデルの表現の有効性は包括的に調べられていない。
このギャップを埋めるために,本研究では,bitextマイニングや検索拡張コンテキストによる分類を含むセマンティック検索タスクにおける多言語LMの能力を評価するためのベンチマークであるMINERSを紹介する。
我々は,200以上の多言語にまたがるサンプルを検索する際のLMの堅牢性を評価する,包括的なフレームワークを構築した。
以上の結果から,意味論的に類似した埋め込みを検索するだけで,微調整を必要とせず,最先端のアプローチと競合する性能が得られることが示された。
関連論文リスト
- Tomato, Tomahto, Tomate: Measuring the Role of Shared Semantics among Subwords in Multilingual Language Models [88.07940818022468]
エンコーダのみの多言語言語モデル(mLM)におけるサブワード間の共有セマンティクスの役割を測る第一歩を踏み出した。
意味的に類似したサブワードとその埋め込みをマージして「意味トークン」を形成する。
グループ化されたサブワードの検査では 様々な意味的類似性を示します
論文 参考訳(メタデータ) (2024-11-07T08:38:32Z) - Enhancing Cross-lingual Sentence Embedding for Low-resource Languages with Word Alignment [13.997006139875563]
低リソース言語における言語間単語表現は、特に現在のモデルにおける高リソース言語における単語表現と一致していない。
そこで本研究では,既製の単語アライメントモデルを用いて,英語と低リソース言語8言語間の単語アライメントを明確にする新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-03T05:58:53Z) - Evaluation of Semantic Search and its Role in Retrieved-Augmented-Generation (RAG) for Arabic Language [0.0]
本稿では,アラビア語のセマンティックサーチにおいて,単純かつ強力なベンチマークの確立に尽力する。
これらの指標とデータセットの有効性を正確に評価するために、検索拡張生成(RAG)の枠組み内で意味探索の評価を行う。
論文 参考訳(メタデータ) (2024-03-27T08:42:31Z) - Semantic enrichment towards efficient speech representations [9.30840529284715]
本研究では,SAMU-XLSRモデルのドメイン内セマンティックエンリッチメントについて検討する。
我々は、低リソース言語移植性のために、同じドメインのフランス語とイタリア語のベンチマークを使用することの利点を示す。
論文 参考訳(メタデータ) (2023-07-03T19:52:56Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Retrofitting Multilingual Sentence Embeddings with Abstract Meaning
Representation [70.58243648754507]
抽象的意味表現(AMR)を用いた既存の多言語文の埋め込みを改善する新しい手法を提案する。
原文入力と比較すると、AMRは文の中核概念と関係を明確かつ曖昧に表す構造的意味表現である。
実験結果から,多言語文をAMRで埋め込むと,意味的類似性と伝達タスクの両方において,最先端の性能が向上することがわかった。
論文 参考訳(メタデータ) (2022-10-18T11:37:36Z) - UnifieR: A Unified Retriever for Large-Scale Retrieval [84.61239936314597]
大規模な検索は、クエリを与えられた巨大なコレクションから関連ドキュメントをリコールすることである。
事前学習型言語モデル(PLM)に基づく最近の検索手法は,高密度ベクターあるいはレキシコンに基づくパラダイムに大別することができる。
本論文では,高密度ベクトルとレキシコンに基づく検索を2つの表現能力を持つ1つのモデルで統合する学習フレームワークUnifieRを提案する。
論文 参考訳(メタデータ) (2022-05-23T11:01:59Z) - AStitchInLanguageModels: Dataset and Methods for the Exploration of
Idiomaticity in Pre-Trained Language Models [7.386862225828819]
本研究は、MWEを含む自然発生文のデータセットを、細かな意味の集合に手作業で分類する。
我々は,このデータセットを,idiomを含む文の表現生成における言語モデルの有効性と,idiomを用いた言語モデルの有効性を検証するために,2つのタスクで使用する。
論文 参考訳(メタデータ) (2021-09-09T16:53:17Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - XL-WiC: A Multilingual Benchmark for Evaluating Semantic
Contextualization [98.61159823343036]
単語の意味を正確にモデル化する能力を評価するために,Word-in-Context データセット (WiC) を提案する。
我々は、XL-WiCという大規模なマルチ言語ベンチマークを提案し、12の新しい言語でゴールドスタンダードを特徴付けました。
実験結果から、ターゲット言語にタグ付けされたインスタンスが存在しない場合でも、英語データのみにトレーニングされたモデルは、競争力のあるパフォーマンスが得られることが示された。
論文 参考訳(メタデータ) (2020-10-13T15:32:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。