GemNet: Menu-Based, Strategy-Proof Multi-Bidder Auctions Through Deep Learning
- URL: http://arxiv.org/abs/2406.07428v1
- Date: Tue, 11 Jun 2024 16:30:30 GMT
- Title: GemNet: Menu-Based, Strategy-Proof Multi-Bidder Auctions Through Deep Learning
- Authors: Tonghan Wang, Yanchen Jiang, David C. Parkes,
- Abstract summary: GemNet learns auctions with better revenue than affine methods, achieves exact SP whereas previous general multi-bidder methods are approximately SP, and offers greatly enhanced interpretability.
Mixed-integer linear programs are used for menu transforms and through a number of optimizations, including adaptive grids and methods to skip menu elements, we scale to large auction design problems.
- Score: 17.717553267684615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differentiable economics uses deep learning for automated mechanism design. Despite strong progress, it has remained an open problem to learn multi-bidder, general, and fully strategy-proof (SP) auctions. We introduce GEneral Menu-based NETwork (GemNet), which significantly extends the menu-based approach of RochetNet [D\"utting et al., 2023] to the multi-bidder setting. The challenge in achieving SP is to learn bidder-independent menus that are feasible, so that the optimal menu choices for each bidder do not over-allocate items when taken together (we call this menu compatibility). GemNet penalizes the failure of menu compatibility during training, and transforms learned menus after training through price changes, by considering a set of discretized bidder values and reasoning about Lipschitz smoothness to guarantee menu compatibility on the entire value space. This approach is general, leaving undisturbed trained menus that already satisfy menu compatibility and reducing to RochetNet for a single bidder. Mixed-integer linear programs are used for menu transforms and through a number of optimizations, including adaptive grids and methods to skip menu elements, we scale to large auction design problems. GemNet learns auctions with better revenue than affine maximization methods, achieves exact SP whereas previous general multi-bidder methods are approximately SP, and offers greatly enhanced interpretability.
Related papers
- MaskPro: Linear-Space Probabilistic Learning for Strict (N:M)-Sparsity on Large Language Models [53.36415620647177]
Semi-structured sparsity offers a promising solution by strategically retaining $N$ elements out of every $M$ weights.<n>Existing (N:M)-compatible approaches typically fall into two categories: rule-based layerwise greedy search, which suffers from considerable errors, and gradient-driven learning, which incurs prohibitive training costs.<n>We propose a novel linear-space probabilistic framework named MaskPro, which aims to learn a prior categorical distribution for every $M$ consecutive weights and subsequently leverages this distribution to generate the (N:M)-sparsity throughout an $N$-way sampling
arXiv Detail & Related papers (2025-06-15T15:02:59Z) - Personalized Class Incremental Context-Aware Food Classification for Food Intake Monitoring Systems [3.8767314375943918]
Existing class-incremental food classification models have low accuracy for the new classes and lack personalization.
This paper introduces a personalized, class-incremental food classification model designed to overcome these challenges.
Our approach adapts itself to the new array of food classes, maintaining applicability and accuracy, both for new and existing classes by using personalization.
arXiv Detail & Related papers (2025-03-09T14:50:56Z) - Classifier-guided Gradient Modulation for Enhanced Multimodal Learning [50.7008456698935]
Gradient-Guided Modulation (CGGM) is a novel method to balance multimodal learning with gradients.
We conduct extensive experiments on four multimodal datasets: UPMC-Food 101, CMU-MOSI, IEMOCAP and BraTS.
CGGM outperforms all the baselines and other state-of-the-art methods consistently.
arXiv Detail & Related papers (2024-11-03T02:38:43Z) - LW2G: Learning Whether to Grow for Prompt-based Continual Learning [55.552510632228326]
Recent Prompt-based Continual learning has achieved remarkable performance with pre-trained models.<n>These approaches expand a prompt pool by adding a new set of prompts while learning and select the correct set during inference.<n>Previous studies have revealed that learning task-wised prompt sets individually and low selection accuracy pose challenges to the performance of PCL.
arXiv Detail & Related papers (2024-09-27T15:55:13Z) - RoDE: Linear Rectified Mixture of Diverse Experts for Food Large Multi-Modal Models [96.43285670458803]
Uni-Food is a unified food dataset that comprises over 100,000 images with various food labels.
Uni-Food is designed to provide a more holistic approach to food data analysis.
We introduce a novel Linear Rectification Mixture of Diverse Experts (RoDE) approach to address the inherent challenges of food-related multitasking.
arXiv Detail & Related papers (2024-07-17T16:49:34Z) - FoodLMM: A Versatile Food Assistant using Large Multi-modal Model [96.76271649854542]
Large Multi-modal Models (LMMs) have made impressive progress in many vision-language tasks.
This paper proposes FoodLMM, a versatile food assistant based on LMMs with various capabilities.
We introduce a series of novel task-specific tokens and heads, enabling the model to predict food nutritional values and multiple segmentation masks.
arXiv Detail & Related papers (2023-12-22T11:56:22Z) - A Scalable Neural Network for DSIC Affine Maximizer Auction Design [20.177823187525107]
AMenuNet is a scalable neural network that constructs the AMA parameters from bidder and item representations.
We conduct extensive experiments to demonstrate that AMenuNet outperforms strong baselines in both contextual and non-contextual multi-item auctions.
arXiv Detail & Related papers (2023-05-20T10:42:00Z) - MenuAI: Restaurant Food Recommendation System via a Transformer-based
Deep Learning Model [15.248362664235845]
A novel restaurant food recommendation system is proposed in this paper.
It uses Optical Character Recognition (OCR) technology and a transformer-based deep learning model, Learning to Rank (LTR) model.
Our system is able to rank the food dishes in terms of the input search key (e.g., calorie, protein level)
arXiv Detail & Related papers (2022-10-15T11:45:44Z) - Cluttered Food Grasping with Adaptive Fingers and Synthetic-Data Trained
Object Detection [8.218146534971156]
Food packaging industry handles an immense variety of food products with wide-ranging shapes and sizes.
A popular approach to bin-picking is to first identify each piece of food in the tray by using an instance segmentation method.
We propose a method that trains purely on synthetic data and successfully transfers to the real world using sim2real methods.
arXiv Detail & Related papers (2022-03-10T06:44:09Z) - A Context-Integrated Transformer-Based Neural Network for Auction Design [25.763612577196124]
One of the central problems in auction design is developing an incentive-compatible mechanism that maximizes the auctioneer's expected revenue.
We propose $mathttCITransNet$, a context-integrated transformer-based neural network for optimal auction design.
We show by extensive experiments that $mathttCITransNet$ can recover the known optimal solutions in single-item settings, outperform strong baselines in multi-item auctions, and generalize well to cases other than those in training.
arXiv Detail & Related papers (2022-01-29T03:47:00Z) - Learning Revenue-Maximizing Auctions With Differentiable Matching [50.62088223117716]
We propose a new architecture to approximately learn incentive compatible, revenue-maximizing auctions from sampled valuations.
Our architecture uses the Sinkhorn algorithm to perform a differentiable bipartite matching which allows the network to learn strategyproof revenue-maximizing mechanisms.
arXiv Detail & Related papers (2021-06-15T04:37:57Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
We develop a novel deep cooperative NOMA scheme, drawing upon the recent advances in deep learning (DL)
We develop a novel hybrid-cascaded deep neural network (DNN) architecture such that the entire system can be optimized in a holistic manner.
arXiv Detail & Related papers (2020-07-27T12:38:37Z) - Certifying Strategyproof Auction Networks [53.37051312298459]
We focus on the RegretNet architecture, which can represent auctions with arbitrary numbers of items and participants.
We propose ways to explicitly verify strategyproofness under a particular valuation profile using techniques from the neural network verification literature.
arXiv Detail & Related papers (2020-06-15T20:22:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.