LW2G: Learning Whether to Grow for Prompt-based Continual Learning
- URL: http://arxiv.org/abs/2409.18860v2
- Date: Mon, 30 Jun 2025 07:10:12 GMT
- Title: LW2G: Learning Whether to Grow for Prompt-based Continual Learning
- Authors: Qian Feng, Da-wei Zhou, Hanbin Zhao, Chao Zhang, Jiahua Dong, Dengxin Dai, Hui Qian,
- Abstract summary: Recent Prompt-based Continual learning has achieved remarkable performance with pre-trained models.<n>These approaches expand a prompt pool by adding a new set of prompts while learning and select the correct set during inference.<n>Previous studies have revealed that learning task-wised prompt sets individually and low selection accuracy pose challenges to the performance of PCL.
- Score: 55.552510632228326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent Prompt-based Continual learning (PCL) has achieved remarkable performance with pre-trained models. These approaches expand a prompt pool by adding a new set of prompts while learning and select the correct set during inference. Previous studies have revealed that learning task-wised prompt sets individually and low selection accuracy pose challenges to the performance of PCL. In this paper, we propose a plug-in method, $\textbf{L}$earning $\textbf{W}$hether $\textbf{t}$o $\textbf{G}$row $\textbf{(LW2G)}$, which leverages the disparities between tasks to form an effective and efficient prompt sets pool, thereby achieving intra-task knowledge sharing and cooperation and avoiding the unbounded increase in the cost of the prompt pool. Specifically, a shared set is utilized when several tasks share certain commonalities, and a new set is added when there are significant differences between the new and previous tasks. To achieve this, we develop a metric called Hinder Forward Capability (HFC) to measure the hindrance imposed on learning new tasks by surgically modifying the original gradient onto the orthogonal complement of the old feature space. With HFC, an automated scheme, Dynamic Growing Approach, adaptively learns whether to grow with a dynamic threshold. Furthermore, we design a gradient-based constraint to ensure consistency between the updating prompts and pre-trained knowledge. Extensive experiments show the effectiveness of our method. Code is available at https://github.com/RAIAN08/LW2G.
Related papers
- FM-LoRA: Factorized Low-Rank Meta-Prompting for Continual Learning [19.068489119024388]
Continual learning has emerged as a promising approach to leverage pre-trained models for sequential tasks.
Many existing CL methods incrementally store additional learned structures, such as Low-Rank Adaptation (LoRA) adapters or prompts.
We propose FM-LoRA, a novel and efficient low-rank adaptation method that integrates both a dynamic rank selector (DRS) and dynamic meta-prompting (DMP)
arXiv Detail & Related papers (2025-04-09T19:36:18Z) - Achieving More with Less: Additive Prompt Tuning for Rehearsal-Free Class-Incremental Learning [76.32953653161417]
Class-incremental learning enables models to learn new classes progressively while preserving knowledge of previously learned ones.<n>Recent advances in this field have shifted towards parameter-efficient fine-tuning techniques.<n>We present a novel prompt-based approach that addresses the limitation of current approaches.
arXiv Detail & Related papers (2025-03-11T02:27:37Z) - Adapter-Enhanced Semantic Prompting for Continual Learning [91.63494614012362]
Continual learning (CL) enables models to adapt to evolving data streams.
Traditional methods usually retain the past data for replay or add additional branches in the model to learn new knowledge.
We propose a novel lightweight CL framework, which integrates prompt tuning and adapter techniques.
arXiv Detail & Related papers (2024-12-15T06:14:55Z) - CODE-CL: COnceptor-Based Gradient Projection for DEep Continual Learning [7.573297026523597]
We introduce COnceptor-based gradient projection for DEep Continual Learning (CODE-CL)
CODE-CL encodes directional importance within the input space of past tasks, allowing new knowledge integration in directions modulated by $1-S$.
We analyze task overlap using conceptor-based representations to identify highly correlated tasks.
arXiv Detail & Related papers (2024-11-21T22:31:06Z) - Continual LLaVA: Continual Instruction Tuning in Large Vision-Language Models [93.5327725085853]
Continual LLaVA is a rehearsal-free method tailored for continual instruction tuning in LVLMs.
Experiments indicate that the proposed Continual LLaVA outperforms previous methods by significantly reducing the forgetting during the continual instruction tuning process.
arXiv Detail & Related papers (2024-11-04T19:55:32Z) - PECTP: Parameter-Efficient Cross-Task Prompts for Incremental Vision Transformer [76.39111896665585]
Incremental Learning (IL) aims to learn deep models on sequential tasks continually.
Recent vast pre-trained models (PTMs) have achieved outstanding performance by prompt technique in practical IL without the old samples.
arXiv Detail & Related papers (2024-07-04T10:37:58Z) - Adaptive Rentention & Correction for Continual Learning [114.5656325514408]
A common problem in continual learning is the classification layer's bias towards the most recent task.
We name our approach Adaptive Retention & Correction (ARC)
ARC achieves an average performance increase of 2.7% and 2.6% on the CIFAR-100 and Imagenet-R datasets.
arXiv Detail & Related papers (2024-05-23T08:43:09Z) - ULTRA-DP: Unifying Graph Pre-training with Multi-task Graph Dual Prompt [67.8934749027315]
We propose a unified framework for graph hybrid pre-training which injects the task identification and position identification into GNNs.
We also propose a novel pre-training paradigm based on a group of $k$-nearest neighbors.
arXiv Detail & Related papers (2023-10-23T12:11:13Z) - When Prompt-based Incremental Learning Does Not Meet Strong Pretraining [36.0889029038102]
In this work, we develop a learnable Adaptive Prompt Generator (APG)
The key is to unify the prompt retrieval and prompt learning processes into a learnable prompt generator.
Our method significantly outperforms advanced methods in exemplar-free incremental learning without (strong) pretraining.
arXiv Detail & Related papers (2023-08-21T03:33:21Z) - Multimodal Parameter-Efficient Few-Shot Class Incremental Learning [1.9220716793379256]
Few-Shot Class Incremental Learning (FSCIL) is a challenging continual learning task, where limited training examples are available during several learning sessions.
To succeed in this task, it is necessary to avoid over-fitting new classes caused by biased distributions in the few-shot training sets.
CPE-CLIP significantly improves FSCIL performance compared to state-of-the-art proposals while also drastically reducing the number of learnable parameters and training costs.
arXiv Detail & Related papers (2023-03-08T17:34:15Z) - E2-AEN: End-to-End Incremental Learning with Adaptively Expandable
Network [57.87240860624937]
We propose an end-to-end trainable adaptively expandable network named E2-AEN.
It dynamically generates lightweight structures for new tasks without any accuracy drop in previous tasks.
E2-AEN reduces cost and can be built upon any feed-forward architectures in an end-to-end manner.
arXiv Detail & Related papers (2022-07-14T09:04:51Z) - Contextual Squeeze-and-Excitation for Efficient Few-Shot Image
Classification [57.36281142038042]
We present a new adaptive block called Contextual Squeeze-and-Excitation (CaSE) that adjusts a pretrained neural network on a new task to significantly improve performance.
We also present a new training protocol based on Coordinate-Descent called UpperCaSE that exploits meta-trained CaSE blocks and fine-tuning routines for efficient adaptation.
arXiv Detail & Related papers (2022-06-20T15:25:08Z) - Learning to Prompt for Continual Learning [34.609384246149325]
This work presents a new paradigm for continual learning that aims to train a more succinct memory system without accessing task identity at test time.
Our method learns to dynamically prompt (L2P) a pre-trained model to learn tasks sequentially under different task transitions.
The objective is to optimize prompts to instruct the model prediction and explicitly manage task-invariant and task-specific knowledge while maintaining model plasticity.
arXiv Detail & Related papers (2021-12-16T06:17:07Z) - Learning to Relate Depth and Semantics for Unsupervised Domain
Adaptation [87.1188556802942]
We present an approach for encoding visual task relationships to improve model performance in an Unsupervised Domain Adaptation (UDA) setting.
We propose a novel Cross-Task Relation Layer (CTRL), which encodes task dependencies between the semantic and depth predictions.
Furthermore, we propose an Iterative Self-Learning (ISL) training scheme, which exploits semantic pseudo-labels to provide extra supervision on the target domain.
arXiv Detail & Related papers (2021-05-17T13:42:09Z) - Meta-learning the Learning Trends Shared Across Tasks [123.10294801296926]
Gradient-based meta-learning algorithms excel at quick adaptation to new tasks with limited data.
Existing meta-learning approaches only depend on the current task information during the adaptation.
We propose a 'Path-aware' model-agnostic meta-learning approach.
arXiv Detail & Related papers (2020-10-19T08:06:47Z) - Continual Learning with Node-Importance based Adaptive Group Sparse
Regularization [30.23319528662881]
We propose a novel regularization-based continual learning method, dubbed as Adaptive Group Sparsity based Continual Learning (AGS-CL)
Our method selectively employs the two penalties when learning each node based its the importance, which is adaptively updated after learning each new task.
arXiv Detail & Related papers (2020-03-30T18:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.