Beware of Aliases -- Signal Preservation is Crucial for Robust Image Restoration
- URL: http://arxiv.org/abs/2406.07435v1
- Date: Tue, 11 Jun 2024 16:42:17 GMT
- Title: Beware of Aliases -- Signal Preservation is Crucial for Robust Image Restoration
- Authors: Shashank Agnihotri, Julia Grabinski, Janis Keuper, Margret Keuper,
- Abstract summary: We show that simply providing alias-free paths in state-of-the-art reconstruction transformers supports improved model robustness at low costs on the restoration performance.
We do so by proposing BOA-Restormer, a transformer-based image restoration model that executes downsampling and upsampling operations partly in the frequency domain to ensure alias-free paths along the entire model while potentially preserving all relevant high-frequency information.
- Score: 20.607361871965157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image restoration networks are usually comprised of an encoder and a decoder, responsible for aggregating image content from noisy, distorted data and to restore clean, undistorted images, respectively. Data aggregation as well as high-resolution image generation both usually come at the risk of involving aliases, i.e.~standard architectures put their ability to reconstruct the model input in jeopardy to reach high PSNR values on validation data. The price to be paid is low model robustness. In this work, we show that simply providing alias-free paths in state-of-the-art reconstruction transformers supports improved model robustness at low costs on the restoration performance. We do so by proposing BOA-Restormer, a transformer-based image restoration model that executes downsampling and upsampling operations partly in the frequency domain to ensure alias-free paths along the entire model while potentially preserving all relevant high-frequency information.
Related papers
- Learning Arbitrary-Scale RAW Image Downscaling with Wavelet-based Recurrent Reconstruction [31.56360631121638]
We propose a wavelet-based recurrent reconstruction framework to fulfill arbitrary-scale RAW image downscaling.<n>We introduce the Realistic Non-Integer RAW Downscaling (Real-NIRD) dataset, featuring a non-integer downscaling factor of 1.3$times$.<n>Our method outperforms existing state-of-the-art competitors both quantitatively and visually.
arXiv Detail & Related papers (2025-07-31T03:17:10Z) - Decouple to Reconstruct: High Quality UHD Restoration via Active Feature Disentanglement and Reversible Fusion [77.08942160610478]
Ultra-high-definition (UHD) image restoration often faces computational bottlenecks and information loss due to its extremely high resolution.
We propose a Controlled Differential Disentangled VAE that discards easily recoverable background information while encoding more difficult-to-recover degraded information into latent space.
Our method effectively alleviates the information loss problem in VAE models while ensuring computational efficiency, significantly improving the quality of UHD image restoration, and achieves state-of-the-art results in six UHD restoration tasks with only 1M parameters.
arXiv Detail & Related papers (2025-03-17T02:55:18Z) - Exploring Real&Synthetic Dataset and Linear Attention in Image Restoration [47.26304397935705]
Image restoration aims to recover high-quality images from degraded inputs.
Existing methods lack a unified training benchmark for iterations and configurations.
We introduce a large-scale IR dataset called ReSyn, which employs a novel image filtering method based on image complexity.
arXiv Detail & Related papers (2024-12-05T02:11:51Z) - OneRestore: A Universal Restoration Framework for Composite Degradation [33.556183375565034]
In real-world scenarios, image impairments often manifest as composite degradations, presenting a complex interplay of elements such as low light, haze, rain, and snow.
Our study proposes a versatile imaging model that consolidates four physical corruption paradigms to accurately represent complex, composite degradation scenarios.
OneRestore is a novel transformer-based framework designed for adaptive, controllable scene restoration.
arXiv Detail & Related papers (2024-07-05T16:27:00Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - Photo-Realistic Image Restoration in the Wild with Controlled Vision-Language Models [14.25759541950917]
This work leverages a capable vision-language model and a synthetic degradation pipeline to learn image restoration in the wild (wild IR)
Our base diffusion model is the image restoration SDE (IR-SDE)
arXiv Detail & Related papers (2024-04-15T12:34:21Z) - Segmentation Guided Sparse Transformer for Under-Display Camera Image
Restoration [91.65248635837145]
Under-Display Camera (UDC) is an emerging technology that achieves full-screen display via hiding the camera under the display panel.
In this paper, we observe that when using the Vision Transformer for UDC degraded image restoration, the global attention samples a large amount of redundant information and noise.
We propose a Guided Sparse Transformer method (SGSFormer) for the task of restoring high-quality images from UDC degraded images.
arXiv Detail & Related papers (2024-03-09T13:11:59Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Self-Asymmetric Invertible Network for Compression-Aware Image Rescaling [6.861753163565238]
In real-world applications, most images are compressed for transmission.
We propose the Self-Asymmetric Invertible Network (SAIN) for compression-aware image rescaling.
arXiv Detail & Related papers (2023-03-04T08:33:46Z) - Invertible Rescaling Network and Its Extensions [118.72015270085535]
In this work, we propose a novel invertible framework to model the bidirectional degradation and restoration from a new perspective.
We develop invertible models to generate valid degraded images and transform the distribution of lost contents.
Then restoration is made tractable by applying the inverse transformation on the generated degraded image together with a randomly-drawn latent variable.
arXiv Detail & Related papers (2022-10-09T06:58:58Z) - Invertible Image Rescaling [118.2653765756915]
We develop an Invertible Rescaling Net (IRN) to produce visually-pleasing low-resolution images.
We capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process.
arXiv Detail & Related papers (2020-05-12T09:55:53Z) - Blur, Noise, and Compression Robust Generative Adversarial Networks [85.68632778835253]
We propose blur, noise, and compression robust GAN (BNCR-GAN) to learn a clean image generator directly from degraded images.
Inspired by NR-GAN, BNCR-GAN uses a multiple-generator model composed of image, blur- Kernel, noise, and quality-factor generators.
We demonstrate the effectiveness of BNCR-GAN through large-scale comparative studies on CIFAR-10 and a generality analysis on FFHQ.
arXiv Detail & Related papers (2020-03-17T17:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.