OneRestore: A Universal Restoration Framework for Composite Degradation
- URL: http://arxiv.org/abs/2407.04621v4
- Date: Wed, 10 Jul 2024 05:35:48 GMT
- Title: OneRestore: A Universal Restoration Framework for Composite Degradation
- Authors: Yu Guo, Yuan Gao, Yuxu Lu, Huilin Zhu, Ryan Wen Liu, Shengfeng He,
- Abstract summary: In real-world scenarios, image impairments often manifest as composite degradations, presenting a complex interplay of elements such as low light, haze, rain, and snow.
Our study proposes a versatile imaging model that consolidates four physical corruption paradigms to accurately represent complex, composite degradation scenarios.
OneRestore is a novel transformer-based framework designed for adaptive, controllable scene restoration.
- Score: 33.556183375565034
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In real-world scenarios, image impairments often manifest as composite degradations, presenting a complex interplay of elements such as low light, haze, rain, and snow. Despite this reality, existing restoration methods typically target isolated degradation types, thereby falling short in environments where multiple degrading factors coexist. To bridge this gap, our study proposes a versatile imaging model that consolidates four physical corruption paradigms to accurately represent complex, composite degradation scenarios. In this context, we propose OneRestore, a novel transformer-based framework designed for adaptive, controllable scene restoration. The proposed framework leverages a unique cross-attention mechanism, merging degraded scene descriptors with image features, allowing for nuanced restoration. Our model allows versatile input scene descriptors, ranging from manual text embeddings to automatic extractions based on visual attributes. Our methodology is further enhanced through a composite degradation restoration loss, using extra degraded images as negative samples to fortify model constraints. Comparative results on synthetic and real-world datasets demonstrate OneRestore as a superior solution, significantly advancing the state-of-the-art in addressing complex, composite degradations.
Related papers
- Mixed Degradation Image Restoration via Local Dynamic Optimization and Conditional Embedding [67.57487747508179]
Multiple-in-one image restoration (IR) has made significant progress, aiming to handle all types of single degraded image restoration with a single model.
In this paper, we propose a novel multiple-in-one IR model that can effectively restore images with both single and mixed degradations.
arXiv Detail & Related papers (2024-11-25T09:26:34Z) - AllRestorer: All-in-One Transformer for Image Restoration under Composite Degradations [52.076067325999226]
We propose a novel Transformer-based restoration framework, AllRestorer.
AllRestorer adaptively considers all image impairments, thereby avoiding errors from scene descriptor misdirection.
We show that AllRestorer achieves a 5.00 dB increase in PSNR compared to the baseline on the CDD-11 dataset.
arXiv Detail & Related papers (2024-11-16T05:30:55Z) - Chain-of-Restoration: Multi-Task Image Restoration Models are Zero-Shot Step-by-Step Universal Image Restorers [53.298698981438]
We propose Universal Image Restoration (UIR), a new task setting that requires models to be trained on a set of degradation bases and then remove any degradation that these bases can potentially compose in a zero-shot manner.
Inspired by the Chain-of-Thought which prompts LLMs to address problems step-by-step, we propose the Chain-of-Restoration (CoR)
CoR instructs models to step-by-step remove unknown composite degradations.
arXiv Detail & Related papers (2024-10-11T10:21:42Z) - Diff-Restorer: Unleashing Visual Prompts for Diffusion-based Universal Image Restoration [19.87693298262894]
We propose Diff-Restorer, a universal image restoration method based on the diffusion model.
We utilize the pre-trained visual language model to extract visual prompts from degraded images.
We also design a Degradation-aware Decoder to perform structural correction and convert the latent code to the pixel domain.
arXiv Detail & Related papers (2024-07-04T05:01:10Z) - Prompt-based Ingredient-Oriented All-in-One Image Restoration [0.0]
We propose a novel data ingredient-oriented approach to tackle multiple image degradation tasks.
Specifically, we utilize a encoder to capture features and introduce prompts with degradation-specific information to guide the decoder.
Our method performs competitively to the state-of-the-art.
arXiv Detail & Related papers (2023-09-06T15:05:04Z) - DR2: Diffusion-based Robust Degradation Remover for Blind Face
Restoration [66.01846902242355]
Blind face restoration usually synthesizes degraded low-quality data with a pre-defined degradation model for training.
It is expensive and infeasible to include every type of degradation to cover real-world cases in the training data.
We propose Robust Degradation Remover (DR2) to first transform the degraded image to a coarse but degradation-invariant prediction, then employ an enhancement module to restore the coarse prediction to a high-quality image.
arXiv Detail & Related papers (2023-03-13T06:05:18Z) - Invertible Rescaling Network and Its Extensions [118.72015270085535]
In this work, we propose a novel invertible framework to model the bidirectional degradation and restoration from a new perspective.
We develop invertible models to generate valid degraded images and transform the distribution of lost contents.
Then restoration is made tractable by applying the inverse transformation on the generated degraded image together with a randomly-drawn latent variable.
arXiv Detail & Related papers (2022-10-09T06:58:58Z) - RestoreDet: Degradation Equivariant Representation for Object Detection
in Low Resolution Images [81.91416537019835]
We propose a novel framework, RestoreDet, to detect objects in degraded low resolution images.
Our framework based on CenterNet has achieved superior performance compared with existing methods when facing variant degradation situations.
arXiv Detail & Related papers (2022-01-07T03:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.