論文の概要: Benchmarking Vision-Language Contrastive Methods for Medical Representation Learning
- arxiv url: http://arxiv.org/abs/2406.07450v1
- Date: Tue, 11 Jun 2024 16:55:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 14:55:29.191585
- Title: Benchmarking Vision-Language Contrastive Methods for Medical Representation Learning
- Title(参考訳): 医用表象学習のためのベンチマークビジョン-言語コントラスト法
- Authors: Shuvendu Roy, Yasaman Parhizkar, Franklin Ogidi, Vahid Reza Khazaie, Michael Colacci, Ali Etemad, Elham Dolatabadi, Arash Afkanpour,
- Abstract要約: 医療領域におけるマルチモーダル表現学習のためのコントラストフレームワークの総合的なベンチマークを行う。
その結果,第1の質問に対する肯定的な回答,第2の質問に対する否定的な回答,きめ細かい特徴の学習のメリットが示唆された。
- 参考スコア(独自算出の注目度): 16.03318708001763
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We perform a comprehensive benchmarking of contrastive frameworks for learning multimodal representations in the medical domain. Through this study, we aim to answer the following research questions: (i) How transferable are general-domain representations to the medical domain? (ii) Is multimodal contrastive training sufficient, or does it benefit from unimodal training as well? (iii) What is the impact of feature granularity on the effectiveness of multimodal medical representation learning? To answer these questions, we investigate eight contrastive learning approaches under identical training setups, and train them on 2.8 million image-text pairs from four datasets, and evaluate them on 25 downstream tasks, including classification (zero-shot and linear probing), image-to-text and text-to-image retrieval, and visual question-answering. Our findings suggest a positive answer to the first question, a negative answer to the second question, and the benefit of learning fine-grained features. Finally, we make our code publicly available.
- Abstract(参考訳): 医療領域におけるマルチモーダル表現学習のためのコントラストフレームワークの総合的なベンチマークを行う。
本研究は,以下の研究課題に答えることを目的としている。
(i)医療領域への汎用ドメイン表現の転送はどの程度可能か。
(二)マルチモーダルコントラストトレーニングは十分か、一助訓練の恩恵を受けるか。
3)マルチモーダル医療表現学習の有効性に及ぼす特徴粒度の影響
これらの疑問に答えるために、同一のトレーニング設定下で8つのコントラスト学習アプローチを調査し、4つのデータセットから280万のイメージテキストペアをトレーニングし、分類(ゼロショットと線形探索)、画像とテキストと画像の検索、視覚的質問応答を含む25の下流タスクで評価する。
その結果,第1の質問に対する肯定的な回答,第2の質問に対する否定的な回答,きめ細かい特徴の学習のメリットが示唆された。
最後に、コードを公開しています。
関連論文リスト
- ViKL: A Mammography Interpretation Framework via Multimodal Aggregation of Visual-knowledge-linguistic Features [54.37042005469384]
MVKLは,マルチビュー画像,詳細な表示,報告を含む最初のマルチモーダルマンモグラフィーデータセットである。
このデータセットに基づいて、教師なし事前学習のチャラリングタスクに焦点を当てる。
視覚,知識,言語機能を相乗化するフレームワークであるViKLを提案する。
論文 参考訳(メタデータ) (2024-09-24T05:01:23Z) - Autoregressive Sequence Modeling for 3D Medical Image Representation [48.706230961589924]
本稿では, 自己回帰シーケンス事前学習フレームワークを用いて, 3次元医用画像表現を学習するための先駆的手法を提案する。
我々は,空間的,コントラスト的,意味的相関に基づく様々な3次元医用画像にアプローチし,トークンシーケンス内の相互接続された視覚トークンとして扱う。
論文 参考訳(メタデータ) (2024-09-13T10:19:10Z) - Unified Medical Image Pre-training in Language-Guided Common Semantic Space [39.61770813855078]
我々はUnified Medical Image Pre-Trainingフレームワーク(UniMedI)を提案する。
UniMedIは、診断レポートを一般的な意味空間として使用し、医療画像の多様なモダリティの統一表現を作成する。
10種類のデータセットにまたがる2次元画像と3次元画像の性能評価を行った。
論文 参考訳(メタデータ) (2023-11-24T22:01:12Z) - Masked Vision and Language Pre-training with Unimodal and Multimodal
Contrastive Losses for Medical Visual Question Answering [7.669872220702526]
本稿では,入力画像とテキストの非モーダル・マルチモーダル特徴表現を学習する,新しい自己教師型アプローチを提案する。
提案手法は,3つの医用VQAデータセット上での最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2023-07-11T15:00:11Z) - Towards Unifying Medical Vision-and-Language Pre-training via Soft
Prompts [63.84720380390935]
textiti. には、重い融合モジュールを使用するかどうかに応じて、融合エンコーダタイプと二重エンコーダタイプという2つの典型的なタイプがある。
PTUnifier という2つのタイプを統一する手法を提案する。
まず、最も代表的な画像/テキストを格納する機能バンクとして機能する視覚的およびテキスト的プロンプトを導入することで、入力形式を統一する。
論文 参考訳(メタデータ) (2023-02-17T15:43:42Z) - Learning to Exploit Temporal Structure for Biomedical Vision-Language
Processing [53.89917396428747]
視覚言語処理における自己教師あり学習は、画像とテキストのモダリティのセマンティックアライメントを利用する。
トレーニングと微調整の両方で利用できる場合、事前のイメージとレポートを明示的に説明します。
我々のアプローチはBioViL-Tと呼ばれ、テキストモデルと共同で訓練されたCNN-Transformerハイブリッドマルチイメージエンコーダを使用する。
論文 参考訳(メタデータ) (2023-01-11T16:35:33Z) - Universal Multimodal Representation for Language Understanding [110.98786673598015]
本研究は,一般的なNLPタスクの補助信号として視覚情報を利用する新しい手法を提案する。
各文に対して、まず、既存の文-画像ペア上で抽出された軽トピック-画像検索テーブルから、フレキシブルな画像を検索する。
そして、テキストと画像はそれぞれトランスフォーマーエンコーダと畳み込みニューラルネットワークによって符号化される。
論文 参考訳(メタデータ) (2023-01-09T13:54:11Z) - Multi-Modal Masked Autoencoders for Medical Vision-and-Language
Pre-Training [62.215025958347105]
マルチモーダルマスク付きオートエンコーダを用いた自己教師型学習パラダイムを提案する。
我々は、ランダムにマスキングされた画像やテキストから欠落したピクセルやトークンを再構成することで、クロスモーダルなドメイン知識を学習する。
論文 参考訳(メタデータ) (2022-09-15T07:26:43Z) - Contrastive Learning of Medical Visual Representations from Paired
Images and Text [38.91117443316013]
本研究では,自然発生した記述的ペアリングテキストを活用することで,医用視覚表現を学習するための教師なし戦略であるConVIRTを提案する。
この2つのモダリティ間の双方向のコントラスト的目的を通じて、ペア化されたテキストデータを用いて医療画像エンコーダを事前訓練する手法は、ドメインに依存しないため、追加の専門家による入力は不要である。
論文 参考訳(メタデータ) (2020-10-02T02:10:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。