Anomaly Detection on Unstable Logs with GPT Models
- URL: http://arxiv.org/abs/2406.07467v1
- Date: Tue, 11 Jun 2024 17:13:18 GMT
- Title: Anomaly Detection on Unstable Logs with GPT Models
- Authors: Fatemeh Hadadi, Qinghua Xu, Domenico Bianculli, Lionel Briand,
- Abstract summary: This paper reports on an experimental comparison of a fine-tuned LLM and alternative models for anomaly detection on unstable logs.
The pre-training of LLMs on vast datasets may enable a robust understanding of diverse patterns and contextual information.
The difference between GPT-3 and other supervised approaches tends to become more significant as the degree of changes in log sequences increases.
- Score: 1.9713190626298576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Log-based anomaly detection has been widely studied in the literature as a way to increase the dependability of software-intensive systems. In reality, logs can be unstable due to changes made to the software during its evolution. This, in turn, degrades the performance of downstream log analysis activities, such as anomaly detection. The critical challenge in detecting anomalies on these unstable logs is the lack of information about the new logs, due to insufficient log data from new software versions. The application of Large Language Models (LLMs) to many software engineering tasks has revolutionized various domains. In this paper, we report on an experimental comparison of a fine-tuned LLM and alternative models for anomaly detection on unstable logs. The main motivation is that the pre-training of LLMs on vast datasets may enable a robust understanding of diverse patterns and contextual information, which can be leveraged to mitigate the data insufficiency issue in the context of software evolution. Our experimental results on the two-version dataset of LOGEVOL-Hadoop show that the fine-tuned LLM (GPT-3) fares slightly better than supervised baselines when evaluated on unstable logs. The difference between GPT-3 and other supervised approaches tends to become more significant as the degree of changes in log sequences increases. However, it is unclear whether the difference is practically significant in all cases. Lastly, our comparison of prompt engineering (with GPT-4) and fine-tuning reveals that the latter provides significantly superior performance on both stable and unstable logs, offering valuable insights into the effective utilization of LLMs in this domain.
Related papers
- Cross-System Software Log-based Anomaly Detection Using Meta-Learning [17.39262430769509]
AIOps tools have been developed to automate the process of log-based anomaly detection for software systems.
Three practical challenges are widely recognized in this field: high data labeling costs, evolving logs in dynamic systems, and adaptability across different systems.
We propose CroSysLog, an AIOps tool for log-event level anomaly detection, specifically designed in response to these challenges.
arXiv Detail & Related papers (2024-12-19T22:55:45Z) - LogParser-LLM: Advancing Efficient Log Parsing with Large Language Models [19.657278472819588]
We introduce Log-LLM, a novel log integrated with LLM capabilities.
We address the intricate challenge of parsing granularity, proposing a new metric to allow users to calibrate granularity to their specific needs.
Our method's efficacy is empirically demonstrated through evaluations on the Loghub-2k and the large-scale LogPub benchmark.
arXiv Detail & Related papers (2024-08-25T05:34:24Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - LUNAR: Unsupervised LLM-based Log Parsing [34.344687402936835]
We propose LUNAR, an unsupervised-based method for efficient and off-the-shelf log parsing.
Our key insight is that while LLMs may struggle with direct log parsing, their performance can be significantly enhanced through comparative analysis.
Experiments on large-scale public datasets demonstrate that LUNAR significantly outperforms state-of-the-art log crafts in terms of accuracy and efficiency.
arXiv Detail & Related papers (2024-06-11T11:32:01Z) - Flextron: Many-in-One Flexible Large Language Model [85.93260172698398]
We introduce Flextron, a network architecture and post-training model optimization framework supporting flexible model deployment.
We present a sample-efficient training method and associated routing algorithms for transforming an existing trained LLM into a Flextron model.
We demonstrate superior performance over multiple end-to-end trained variants and other state-of-the-art elastic networks, all with a single pretraining run that consumes a mere 7.63% tokens compared to original pretraining.
arXiv Detail & Related papers (2024-06-11T01:16:10Z) - Squeezing Lemons with Hammers: An Evaluation of AutoML and Tabular Deep Learning for Data-Scarce Classification Applications [2.663744975320783]
We find that L2-regularized logistic regression performs similar to state-of-the-art automated machine learning (AutoML) frameworks.
We recommend to consider logistic regression as the first choice for data-scarce applications.
arXiv Detail & Related papers (2024-05-13T11:43:38Z) - Semi-supervised learning via DQN for log anomaly detection [1.5339370927841764]
Current methods in log anomaly detection face challenges such as underutilization of unlabeled data, imbalance between normal and anomaly class data, and high rates of false positives and false negatives.
We propose a semi-supervised log anomaly detection method named DQNLog, which integrates deep reinforcement learning to enhance anomaly detection performance.
We evaluate DQNLog on three widely used datasets, demonstrating its ability to effectively utilize large-scale unlabeled data.
arXiv Detail & Related papers (2024-01-06T08:04:13Z) - LogGPT: Log Anomaly Detection via GPT [15.790373280124196]
We propose LogGPT, a novel framework that employs GPT for log anomaly detection.
LogGPT is first trained to predict the next log entry based on the preceding sequence.
We propose a novel reinforcement learning strategy to finetune the model specifically for the log anomaly detection task.
arXiv Detail & Related papers (2023-09-25T19:29:50Z) - In Situ Framework for Coupling Simulation and Machine Learning with
Application to CFD [51.04126395480625]
Recent years have seen many successful applications of machine learning (ML) to facilitate fluid dynamic computations.
As simulations grow, generating new training datasets for traditional offline learning creates I/O and storage bottlenecks.
This work offers a solution by simplifying this coupling and enabling in situ training and inference on heterogeneous clusters.
arXiv Detail & Related papers (2023-06-22T14:07:54Z) - Log-based Anomaly Detection based on EVT Theory with feedback [31.949892354842525]
We present an accurate, lightweight, and adaptive log-based anomaly detection framework, referred to as SeaLog.
Our method introduces a Trie-based Detection Agent (TDA) that employs a lightweight, dynamically-growing trie structure for real-time anomaly detection.
To enhance TDA's accuracy in response to evolving log data, we enable it to receive feedback from experts.
arXiv Detail & Related papers (2023-06-08T08:34:58Z) - EvLog: Identifying Anomalous Logs over Software Evolution [31.46106509190191]
We propose a novel unsupervised approach named Evolving Log extractor (EvLog) to process logs without parsing.
EvLog implements an anomaly discriminator with an attention mechanism to identify the anomalous logs and avoid the issue brought by the unstable sequence.
EvLog has shown effectiveness in two real-world system evolution log datasets with an average F1 score of 0.955 and 0.847 in the intra-version setting and inter-version setting, respectively.
arXiv Detail & Related papers (2023-06-02T12:58:00Z) - FlexMoE: Scaling Large-scale Sparse Pre-trained Model Training via
Dynamic Device Placement [19.639936387834677]
Mixture-of-Experts (MoEs) are becoming more popular and have demonstrated impressive pretraining scalability in various downstream tasks.
MoEs are becoming a new data analytics paradigm in the data life cycle and suffering from unique challenges at scales, complexities, and granularities never before possible.
In this paper, we propose a novel DNN training framework, FlexMoE, which systematically and transparently address the inefficiency caused by dynamic dataflow.
arXiv Detail & Related papers (2023-04-08T07:34:26Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - LogLAB: Attention-Based Labeling of Log Data Anomalies via Weak
Supervision [63.08516384181491]
We present LogLAB, a novel modeling approach for automated labeling of log messages without requiring manual work by experts.
Our method relies on estimated failure time windows provided by monitoring systems to produce precise labeled datasets in retrospect.
Our evaluation shows that LogLAB consistently outperforms nine benchmark approaches across three different datasets and maintains an F1-score of more than 0.98 even at large failure time windows.
arXiv Detail & Related papers (2021-11-02T15:16:08Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
We present a data-driven strategy for automatically learning summary features from time series data.
Our results indicate that learning summary features from data can compete and even outperform LFI methods based on hand-crafted values.
arXiv Detail & Related papers (2020-12-04T19:21:37Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z) - Self-Supervised Log Parsing [59.04636530383049]
Large-scale software systems generate massive volumes of semi-structured log records.
Existing approaches rely on log-specifics or manual rule extraction.
We propose NuLog that utilizes a self-supervised learning model and formulates the parsing task as masked language modeling.
arXiv Detail & Related papers (2020-03-17T19:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.