論文の概要: Simple and Effective Masked Diffusion Language Models
- arxiv url: http://arxiv.org/abs/2406.07524v2
- Date: Sun, 10 Nov 2024 20:34:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:06:22.506057
- Title: Simple and Effective Masked Diffusion Language Models
- Title(参考訳): 単純かつ効果的なマスケ拡散言語モデル
- Authors: Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T Chiu, Alexander Rush, Volodymyr Kuleshov,
- Abstract要約: 単純なマスク付き離散拡散は以前考えられていたよりも性能が高いことを示す。
私たちの目標はシンプルなフォーム -- 古典的なマスキング言語モデリング損失の混合です。
言語モデリングベンチマークでは、現代のエンジニアリングプラクティスで訓練された様々なマスク付き拡散モデルが、新しい最先端技術を実現している。
- 参考スコア(独自算出の注目度): 48.68198363304619
- License:
- Abstract: While diffusion models excel at generating high-quality images, prior work reports a significant performance gap between diffusion and autoregressive (AR) methods in language modeling. In this work, we show that simple masked discrete diffusion is more performant than previously thought. We apply an effective training recipe that improves the performance of masked diffusion models and derive a simplified, Rao-Blackwellized objective that results in additional improvements. Our objective has a simple form -- it is a mixture of classical masked language modeling losses -- and can be used to train encoder-only language models that admit efficient samplers, including ones that can generate arbitrary lengths of text semi-autoregressively like a traditional language model. On language modeling benchmarks, a range of masked diffusion models trained with modern engineering practices achieves a new state-of-the-art among diffusion models, and approaches AR perplexity. We provide the code, along with a blog post and video tutorial on the project page: https://s-sahoo.com/mdlm
- Abstract(参考訳): 拡散モデルは高品質な画像を生成するのに優れるが、先行研究では言語モデリングにおける拡散と自己回帰(AR)法の間に大きな性能差が報告されている。
本研究では,従来考えられていたよりも単純なマスク付き離散拡散の方が性能が高いことを示す。
マスク付き拡散モデルの性能を向上する効果的なトレーニングレシピを適用し、さらに改善をもたらす単純化されたラオブラックウェル化目標を導出する。
従来の言語モデルと同様、任意の長さのテキストを半自動生成できるものを含め、効率的なサンプリングを許容するエンコーダのみの言語モデルをトレーニングするために使用できます。
言語モデリングベンチマークでは、現代のエンジニアリングプラクティスで訓練された様々なマスク付き拡散モデルが、拡散モデル間の新たな最先端を実現し、ARの難易度にアプローチする。
コードとプロジェクトページのブログ記事とビデオチュートリアルを提供しています。
関連論文リスト
- Scaling Diffusion Language Models via Adaptation from Autoregressive Models [105.70889434492143]
拡散言語モデル(DLM)は、テキスト生成モデルのための将来性のある新しいパラダイムとして登場した。
170Mから7BまでのARモデルをDiffuGPTとDiffuLLaMAの拡散モデルに変換し、200B未満のトークンでトレーニングできることを示す。
実験の結果,これらのモデルは初期のDLMよりも優れており,ARと競合していることがわかった。
論文 参考訳(メタデータ) (2024-10-23T14:04:22Z) - Simplified and Generalized Masked Diffusion for Discrete Data [47.711583631408715]
離散データの生成モデリングのための自己回帰モデルの代替として、マスケッド拡散(または吸収拡散)が積極的に研究されている。
本研究の目的は,マスク拡散モデルの潜在能力を最大限に活用する,シンプルで汎用的なフレームワークを提供することである。
論文 参考訳(メタデータ) (2024-06-06T17:59:10Z) - Likelihood-Based Diffusion Language Models [13.916640262862215]
自己回帰型言語モデルと拡散型言語モデルとのギャップを埋める第一歩を踏み出す。
我々は、アルゴリズムの改善、法則のスケーリング、計算量の増加を通じて、この目標を追求する。
我々はGPT-2 124Mをベンチマークデータセットで上回る大きな拡散言語モデルであるPlaid 1Bをリリースする。
論文 参考訳(メタデータ) (2023-05-30T16:43:31Z) - LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image
Diffusion Models with Large Language Models [62.75006608940132]
本研究は,テキストから画像への拡散モデルにおいて,迅速な理解能力を高めることを提案する。
提案手法は,新たな2段階プロセスにおいて,事前訓練された大規模言語モデルを用いてグラウンドド生成を行う。
提案手法は,画像の正確な生成において,ベース拡散モデルといくつかの強いベースラインを著しく上回る。
論文 参考訳(メタデータ) (2023-05-23T03:59:06Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LMは言語モデリングのための新しい拡散モデルであり、言語の言語的特徴に触発されている。
具体的には,テキストデータのノイズを改善するために,戦略的ソフトマスキングによってテキストに劣化を加える言語情報処理を設計する。
我々は,我々のMasked-Diffuse LMが,高効率の最先端拡散モデルよりも優れた生成品質を達成できることを実証した。
論文 参考訳(メタデータ) (2023-04-10T17:58:42Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
拡散モデルに対する近年の関心を踏まえて、生成的に事前学習された視覚表現を再考する。
拡散モデルによる直接事前学習では強い表現は得られないが、マスク付き入力上での拡散モデルと公式拡散モデルをマスク付きオートエンコーダ(DiffMAE)として条件付ける。
設計選択の長所と短所について包括的な研究を行い、拡散モデルとマスク付きオートエンコーダ間の接続を構築する。
論文 参考訳(メタデータ) (2023-04-06T17:59:56Z) - DiffusionBERT: Improving Generative Masked Language Models with
Diffusion Models [81.84866217721361]
DiffusionBERTは離散拡散モデルに基づく新しい生成マスク付き言語モデルである。
本稿では,各ステップに付加される雑音の度合いを制御する前方拡散プロセスのための新しいノイズスケジュールを提案する。
非条件テキスト生成の実験では、DiffusionBERTは既存のテキスト拡散モデルよりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-11-28T03:25:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。