論文の概要: Vision Model Pre-training on Interleaved Image-Text Data via Latent Compression Learning
- arxiv url: http://arxiv.org/abs/2406.07543v1
- Date: Tue, 11 Jun 2024 17:59:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 14:26:16.197368
- Title: Vision Model Pre-training on Interleaved Image-Text Data via Latent Compression Learning
- Title(参考訳): ラテント圧縮学習によるインターリーブ画像テキストデータのビジョンモデル事前学習
- Authors: Chenyu Yang, Xizhou Zhu, Jinguo Zhu, Weijie Su, Junjie Wang, Xuan Dong, Wenhai Wang, Lewei Lu, Bin Li, Jie Zhou, Yu Qiao, Jifeng Dai,
- Abstract要約: 本稿では,LCL(Latent Compression Learning)と呼ばれる視覚モデル事前学習手法を提案する。
学習対象は,1)視覚表現と先行文脈の対比学習,2)視覚表現に基づく後続テキストの生成という2つの基本課題に分解することができる。
実験により,本手法は,ペア付き事前学習データセット上でのCLIPの性能に適合するだけでなく,インターリーブ付き事前学習データの活用も可能であることが示された。
- 参考スコア(独自算出の注目度): 78.19528555505961
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, vision model pre-training has evolved from relying on manually annotated datasets to leveraging large-scale, web-crawled image-text data. Despite these advances, there is no pre-training method that effectively exploits the interleaved image-text data, which is very prevalent on the Internet. Inspired by the recent success of compression learning in natural language processing, we propose a novel vision model pre-training method called Latent Compression Learning (LCL) for interleaved image-text data. This method performs latent compression learning by maximizing the mutual information between the inputs and outputs of a causal attention model. The training objective can be decomposed into two basic tasks: 1) contrastive learning between visual representation and preceding context, and 2) generating subsequent text based on visual representation. Our experiments demonstrate that our method not only matches the performance of CLIP on paired pre-training datasets (e.g., LAION), but can also leverage interleaved pre-training data (e.g., MMC4) to learn robust visual representation from scratch, showcasing the potential of vision model pre-training with interleaved image-text data. Code is released at https://github.com/OpenGVLab/LCL.
- Abstract(参考訳): 近年、視覚モデル事前トレーニングは、手動で注釈付きデータセットを頼りにし、大規模なWebクローリング画像テキストデータを活用するように進化してきた。
これらの進歩にもかかわらず、インターネット上で広く普及しているインターリーブ画像テキストデータを効果的に活用する事前学習手法は存在しない。
近年,自然言語処理における圧縮学習の成功に触発されて,LCL(Latent Compression Learning)と呼ばれる新たな視覚モデル事前学習手法を提案する。
因果注意モデルの入力と出力の相互情報を最大化し、潜時圧縮学習を行う。
訓練対象は2つの基本的なタスクに分解できる。
1)視覚表現と先行文脈の対比学習
2)視覚的表現に基づく後続のテキストの生成。
実験により,本手法は,ペア付き事前学習データセット(例:LAION)上でのCLIPの性能にマッチするだけでなく,インターリーブ付き事前学習データ(例:MCC4)を利用して,スクラッチから堅牢な視覚表現を学習し,インターリーブ付き画像テキストデータによる事前学習の可能性を示す。
コードはhttps://github.com/OpenGVLab/LCLで公開されている。
関連論文リスト
- CatLIP: CLIP-level Visual Recognition Accuracy with 2.7x Faster Pre-training on Web-scale Image-Text Data [40.88256210436378]
本稿では,Web スケールの画像テキストデータに基づく視覚モデルの弱教師付き事前学習を提案する。
提案手法は,画像テキストデータに基づく事前学習を分類タスクとして再編成する。
Webスケールのデータに対する対照的な学習に比べて、トレーニング速度の2.7倍の加速を実現している。
論文 参考訳(メタデータ) (2024-04-24T05:13:28Z) - VILA: On Pre-training for Visual Language Models [74.08039416548209]
ステップ・バイ・ステップ制御可能な比較によるVLM事前学習の設計オプションについて検討した。
私たちは、最先端のモデルよりも一貫して優れたVisual LanguageモデルファミリであるVILAを構築します。
論文 参考訳(メタデータ) (2023-12-12T18:58:18Z) - ALIP: Adaptive Language-Image Pre-training with Synthetic Caption [78.93535202851278]
コントラスト言語-画像事前学習(CLIP)は、様々な視覚言語タスクのパフォーマンスを大幅に向上させた。
Webデータに固有のノイズと未整合画像テキストペアが存在することは、表現学習のパフォーマンスに影響を与える可能性がある。
本稿では、原文と合成キャプションの両方からの監督を統合するバイパスモデルであるAdaptive Language-Image Pre-Training(ALIP)を提案する。
論文 参考訳(メタデータ) (2023-08-16T15:19:52Z) - Vision Learners Meet Web Image-Text Pairs [32.36188289972377]
本研究では,ノイズの多いWebソースと画像テキストのペアデータに対する自己教師付き事前学習について検討する。
マスク付きトレーニング目標を用いたシングルモーダルトレーニングや,画像テキストコンストラシティブトレーニングを用いたマルチモーダルトレーニングなど,さまざまな手法を比較した。
我々は、スケーラブルなWebソース画像テキストデータから学習する新しいビジュアル表現事前学習手法MUlti-modal Generator(MUG)を提案する。
論文 参考訳(メタデータ) (2023-01-17T18:53:24Z) - CLIP-ViP: Adapting Pre-trained Image-Text Model to Video-Language
Representation Alignment [146.3128011522151]
本稿では,CLIP,すなわちCLIP-ViPに基づいて,ビデオプロキシ機構を備えたOmniクロスモーダル学習手法を提案する。
提案手法は,ビデオテキスト検索におけるCLIPの性能を大きなマージンで向上させる。
MSR-VTT, DiDeMo, LSMDC, ActivityNet など,様々なデータセット上でのSOTA結果も得られた。
論文 参考訳(メタデータ) (2022-09-14T05:47:02Z) - Coarse-to-Fine Vision-Language Pre-training with Fusion in the Backbone [170.85076677740292]
本稿では、視覚言語(VL)事前学習のための新しいモデルアーキテクチャであるFIBER(Fusion-In-the-Backbone-basedER)を提案する。
ユニモーダルバックボーンの後に、専用のトランスフォーマー層を融合させる代わりに、FIBERはマルチモーダルフュージョンをモデルに深く押し込む。
我々は、VQA、画像キャプション、検索、フレーズグラウンド、参照表現理解、オブジェクト検出など、幅広いVLタスクに関する包括的な実験を行う。
論文 参考訳(メタデータ) (2022-06-15T16:41:29Z) - DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting [91.56988987393483]
本稿では,CLIPから事前学習した知識を暗黙的かつ明示的に活用することで,高密度予測のための新しい枠組みを提案する。
具体的には,CLIPにおける元の画像テキストマッチング問題を画素テキストマッチング問題に変換し,画素テキストスコアマップを用いて高密度予測モデルの学習を指導する。
本手法は,任意の密集予測システムや種々の事前学習された視覚バックボーンに適用可能な,モデルに依存しない手法である。
論文 参考訳(メタデータ) (2021-12-02T18:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。