Supporting Self-Reflection at Scale with Large Language Models: Insights from Randomized Field Experiments in Classrooms
- URL: http://arxiv.org/abs/2406.07571v1
- Date: Sat, 1 Jun 2024 02:41:59 GMT
- Title: Supporting Self-Reflection at Scale with Large Language Models: Insights from Randomized Field Experiments in Classrooms
- Authors: Harsh Kumar, Ruiwei Xiao, Benjamin Lawson, Ilya Musabirov, Jiakai Shi, Xinyuan Wang, Huayin Luo, Joseph Jay Williams, Anna Rafferty, John Stamper, Michael Liut,
- Abstract summary: We investigate the potential of Large Language Models (LLMs) to help students engage in post-lesson reflection.
We conducted two randomized field experiments in undergraduate computer science courses.
- Score: 7.550701021850185
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Self-reflection on learning experiences constitutes a fundamental cognitive process, essential for the consolidation of knowledge and the enhancement of learning efficacy. However, traditional methods to facilitate reflection often face challenges in personalization, immediacy of feedback, engagement, and scalability. Integration of Large Language Models (LLMs) into the reflection process could mitigate these limitations. In this paper, we conducted two randomized field experiments in undergraduate computer science courses to investigate the potential of LLMs to help students engage in post-lesson reflection. In the first experiment (N=145), students completed a take-home assignment with the support of an LLM assistant; half of these students were then provided access to an LLM designed to facilitate self-reflection. The results indicated that the students assigned to LLM-guided reflection reported increased self-confidence and performed better on a subsequent exam two weeks later than their peers in the control condition. In the second experiment (N=112), we evaluated the impact of LLM-guided self-reflection against other scalable reflection methods, such as questionnaire-based activities and review of key lecture slides, after assignment. Our findings suggest that the students in the questionnaire and LLM-based reflection groups performed equally well and better than those who were only exposed to lecture slides, according to their scores on a proctored exam two weeks later on the same subject matter. These results underscore the utility of LLM-guided reflection and questionnaire-based activities in improving learning outcomes. Our work highlights that focusing solely on the accuracy of LLMs can overlook their potential to enhance metacognitive skills through practices such as self-reflection. We discuss the implications of our research for the Edtech community.
Related papers
- LLMs Could Autonomously Learn Without External Supervision [36.36147944680502]
Large Language Models (LLMs) have traditionally been tethered to human-annotated datasets and predefined training objectives.
This paper presents a transformative approach: Autonomous Learning for LLMs.
This method endows LLMs with the ability to self-educate through direct interaction with text, akin to a human reading and comprehending literature.
arXiv Detail & Related papers (2024-06-02T03:36:37Z) - Decompose and Aggregate: A Step-by-Step Interpretable Evaluation Framework [75.81096662788254]
Large Language Models (LLMs) are scalable and economical evaluators.
The question of how reliable these evaluators are has emerged as a crucial research question.
We propose Decompose and Aggregate, which breaks down the evaluation process into different stages based on pedagogical practices.
arXiv Detail & Related papers (2024-05-24T08:12:30Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Comprehensive Reassessment of Large-Scale Evaluation Outcomes in LLMs: A Multifaceted Statistical Approach [64.42462708687921]
Evaluations have revealed that factors such as scaling, training types, architectures and other factors profoundly impact the performance of LLMs.
Our study embarks on a thorough re-examination of these LLMs, targeting the inadequacies in current evaluation methods.
This includes the application of ANOVA, Tukey HSD tests, GAMM, and clustering technique.
arXiv Detail & Related papers (2024-03-22T14:47:35Z) - Fact-and-Reflection (FaR) Improves Confidence Calibration of Large Language Models [84.94220787791389]
We propose Fact-and-Reflection (FaR) prompting, which improves the LLM calibration in two steps.
Experiments show that FaR achieves significantly better calibration; it lowers the Expected Error by 23.5%.
FaR even elicits the capability of verbally expressing concerns in less confident scenarios.
arXiv Detail & Related papers (2024-02-27T01:37:23Z) - PRE: A Peer Review Based Large Language Model Evaluator [14.585292530642603]
Existing paradigms rely on either human annotators or model-based evaluators to evaluate the performance of LLMs.
We propose a novel framework that can automatically evaluate LLMs through a peer-review process.
arXiv Detail & Related papers (2024-01-28T12:33:14Z) - Impact of Guidance and Interaction Strategies for LLM Use on Learner Performance and Perception [19.335003380399527]
Large language models (LLMs) offer a promising avenue, with increasing research exploring their educational utility.
Our work highlights the role that teachers can play in shaping LLM-supported learning environments.
arXiv Detail & Related papers (2023-10-13T01:21:52Z) - Large Language Models Cannot Self-Correct Reasoning Yet [78.16697476530994]
Large Language Models (LLMs) have emerged as a groundbreaking technology with their unparalleled text generation capabilities.
Concerns persist regarding the accuracy and appropriateness of their generated content.
A contemporary methodology, self-correction, has been proposed as a remedy to these issues.
arXiv Detail & Related papers (2023-10-03T04:56:12Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
Large language models (LLMs) are favored by human annotators over the original reference summaries in commonly used summarization datasets.
We study an LLM-as-reference learning setting for smaller text summarization models to investigate whether their performance can be substantially improved.
arXiv Detail & Related papers (2023-05-23T16:56:04Z) - Learning from Mistakes via Cooperative Study Assistant for Large
Language Models [17.318591492264023]
Large language models (LLMs) have demonstrated their potential to refine their generation based on their own feedback.
We propose Study Assistant for Large LAnguage Model (SALAM), a novel framework with an auxiliary agent to assist the main LLM in learning from mistakes.
arXiv Detail & Related papers (2023-05-23T08:51:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.