Towards Effective Evaluations and Comparisons for LLM Unlearning Methods
- URL: http://arxiv.org/abs/2406.09179v2
- Date: Tue, 25 Feb 2025 03:42:38 GMT
- Title: Towards Effective Evaluations and Comparisons for LLM Unlearning Methods
- Authors: Qizhou Wang, Bo Han, Puning Yang, Jianing Zhu, Tongliang Liu, Masashi Sugiyama,
- Abstract summary: This paper seeks to refine the evaluation of machine unlearning for large language models.<n>It addresses two key challenges -- the robustness of evaluation metrics and the trade-offs between competing goals.
- Score: 97.2995389188179
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The imperative to eliminate undesirable data memorization underscores the significance of machine unlearning for large language models (LLMs). Recent research has introduced a series of promising unlearning methods, notably boosting the practical significance of the field. Nevertheless, adopting a proper evaluation framework to reflect the true unlearning efficacy is also essential yet has not received adequate attention. This paper seeks to refine the evaluation of LLM unlearning by addressing two key challenges -- a) the robustness of evaluation metrics and b) the trade-offs between competing goals. The first challenge stems from findings that current metrics are susceptible to various red teaming scenarios. It indicates that they may not reflect the true extent of knowledge retained by LLMs but rather tend to mirror superficial model behaviors, thus prone to attacks. We address this issue by devising and assessing a series of candidate metrics, selecting the most robust ones under various types of attacks. The second challenge arises from the conflicting goals of eliminating unwanted knowledge while retaining those of others. This trade-off between unlearning and retention often fails to conform the Pareto frontier, rendering it subtle to compare the efficacy between methods that excel only in either unlearning or retention. We handle this issue by proposing a calibration method that can restore the original performance on non-targeted data after unlearning, thereby allowing us to focus exclusively on assessing the strength of unlearning. Our evaluation framework notably enhances the effectiveness when assessing and comparing various LLM unlearning methods, further allowing us to benchmark existing works, identify their proper hyper-parameters, and explore new tricks to enhance their practical efficacy.
Related papers
- Beyond Single-Value Metrics: Evaluating and Enhancing LLM Unlearning with Cognitive Diagnosis [34.62178125699054]
UNCD (UNlearning evaluation via Cognitive Diagnosis) is a novel framework for fine-grained evaluation of LLM unlearning.
Our benchmark, UNCD-Cyber, provides a detailed assessment of the removal of dangerous capabilities.
Our dedicated benchmark, UNCD-Cyber, provides a detailed assessment of the removal of dangerous capabilities.
arXiv Detail & Related papers (2025-02-19T06:56:59Z) - Redefining Machine Unlearning: A Conformal Prediction-Motivated Approach [1.3731623617634434]
We identify critical limitations in existing unlearning metrics and propose enhanced evaluation metrics inspired by conformal prediction.
Our metrics can effectively capture the extent to which ground truth labels are excluded from the prediction set.
We propose an unlearning framework that integrates conformal prediction insights into Carlini & Wagner adversarial attack loss.
arXiv Detail & Related papers (2025-01-31T18:58:43Z) - Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods [1.9799527196428242]
Large language model unlearning aims to remove harmful information that LLMs have learnt to prevent their use for malicious purposes.
LMU and RMU have been proposed as two methods for LLM unlearning, achieving impressive results on unlearning benchmarks.
arXiv Detail & Related papers (2024-11-18T22:31:17Z) - Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [92.99416966226724]
We introduce Facial Identity Unlearning Benchmark (FIUBench), a novel VLM unlearning benchmark designed to robustly evaluate the effectiveness of unlearning algorithms.
We apply a two-stage evaluation pipeline that is designed to precisely control the sources of information and their exposure levels.
Through the evaluation of four baseline VLM unlearning algorithms within FIUBench, we find that all methods remain limited in their unlearning performance.
arXiv Detail & Related papers (2024-11-05T23:26:10Z) - A Closer Look at Machine Unlearning for Large Language Models [46.245404272612795]
Large language models (LLMs) may memorize sensitive or copyrighted content, raising privacy and legal concerns.
We discuss several issues in machine unlearning for LLMs and provide our insights on possible approaches.
arXiv Detail & Related papers (2024-10-10T16:56:05Z) - Position: LLM Unlearning Benchmarks are Weak Measures of Progress [31.957968729934745]
We find that existing benchmarks provide an overly optimistic and potentially misleading view on the effectiveness of candidate unlearning methods.
We identify that existing benchmarks are particularly vulnerable to modifications that introduce even loose dependencies between the forget and retain information.
arXiv Detail & Related papers (2024-10-03T18:07:25Z) - Towards Robust Knowledge Unlearning: An Adversarial Framework for Assessing and Improving Unlearning Robustness in Large Language Models [19.015202590038996]
We design Dynamic Unlearning Attack (DUA), a dynamic and automated framework to attack unlearned models.
We propose Latent Adrial Unlearning (LAU), a universal framework that effectively enhances the robustness of the unlearned process.
We demonstrate that LAU improves unlearning effectiveness by over $53.5%$, cause only less than a $11.6%$ reduction in neighboring knowledge, and have almost no impact on the model's general capabilities.
arXiv Detail & Related papers (2024-08-20T09:36:04Z) - Machine Unlearning with Minimal Gradient Dependence for High Unlearning Ratios [18.73206066109299]
Mini-Unlearning is a novel approach that capitalizes on a critical observation: unlearned parameters correlate with retrained parameters through contraction mapping.
This lightweight, scalable method significantly enhances model accuracy and strengthens resistance to membership inference attacks.
Our experiments demonstrate that Mini-Unlearning not only works under higher unlearning ratios but also outperforms existing techniques in both accuracy and security.
arXiv Detail & Related papers (2024-06-24T01:43:30Z) - Preference Fine-Tuning of LLMs Should Leverage Suboptimal, On-Policy Data [102.16105233826917]
Learning from preference labels plays a crucial role in fine-tuning large language models.
There are several distinct approaches for preference fine-tuning, including supervised learning, on-policy reinforcement learning (RL), and contrastive learning.
arXiv Detail & Related papers (2024-04-22T17:20:18Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.
This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.
We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Offline Reinforcement Learning with Instrumental Variables in Confounded
Markov Decision Processes [93.61202366677526]
We study the offline reinforcement learning (RL) in the face of unmeasured confounders.
We propose various policy learning methods with the finite-sample suboptimality guarantee of finding the optimal in-class policy.
arXiv Detail & Related papers (2022-09-18T22:03:55Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
Planning at Test-time (IMPLANT) is a new meta-algorithm for imitation learning.
We demonstrate that IMPLANT significantly outperforms benchmark imitation learning approaches on standard control environments.
arXiv Detail & Related papers (2022-04-07T17:16:52Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - On Data Efficiency of Meta-learning [17.739215706060605]
We study the often overlooked aspect of the modern meta-learning algorithms -- their data efficiency.
We introduce a new simple framework for evaluating meta-learning methods under a limit on the available supervision.
We propose active meta-learning, which incorporates active data selection into learning-to-learn, leading to better performance of all methods in the limited supervision regime.
arXiv Detail & Related papers (2021-01-30T01:44:12Z) - Learning the Truth From Only One Side of the Story [58.65439277460011]
We focus on generalized linear models and show that without adjusting for this sampling bias, the model may converge suboptimally or even fail to converge to the optimal solution.
We propose an adaptive approach that comes with theoretical guarantees and show that it outperforms several existing methods empirically.
arXiv Detail & Related papers (2020-06-08T18:20:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.