論文の概要: Tag and correct: high precision post-editing approach to correction of speech recognition errors
- arxiv url: http://arxiv.org/abs/2406.07589v1
- Date: Tue, 11 Jun 2024 09:52:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 21:35:30.181010
- Title: Tag and correct: high precision post-editing approach to correction of speech recognition errors
- Title(参考訳): タグと正しい:音声認識誤り訂正のための高精度後編集手法
- Authors: Tomasz Ziętkiewicz,
- Abstract要約: ASR(Automatic Speech Recognition)仮説の単語を単語単位で修正する方法を学ぶニューラルネットワークタグと、タグによって返される修正を適用する修正モジュールとから構成される。
提案手法はアーキテクチャによらず,任意のASRシステムに適用可能である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a new approach to the problem of correcting speech recognition errors by means of post-editing. It consists of using a neural sequence tagger that learns how to correct an ASR (Automatic Speech Recognition) hypothesis word by word and a corrector module that applies corrections returned by the tagger. The proposed solution is applicable to any ASR system, regardless of its architecture, and provides high-precision control over errors being corrected. This is especially crucial in production environments, where avoiding the introduction of new mistakes by the error correction model may be more important than the net gain in overall results. The results show that the performance of the proposed error correction models is comparable with previous approaches while requiring much smaller resources to train, which makes it suitable for industrial applications, where both inference latency and training times are critical factors that limit the use of other techniques.
- Abstract(参考訳): 本稿では,後編集による音声認識誤り訂正問題に対する新しいアプローチを提案する。
ASR(Automatic Speech Recognition)仮説の単語を単語単位で修正する方法を学ぶニューラルネットワークタグと、タグによって返される修正を適用する修正モジュールとから構成される。
提案手法はアーキテクチャによらず,任意のASRシステムに適用可能である。
これは本番環境では特に重要であり、エラー訂正モデルによる新しいミスの導入を避けることは、全体的な結果の純利よりも重要である可能性がある。
その結果,提案モデルの性能は従来の手法に匹敵するが,トレーニングに要するリソースははるかに小さいため,推論遅延とトレーニング時間の両方が他の手法の使用を制限する重要な要因である産業用途に適していることがわかった。
関連論文リスト
- Subtle Errors Matter: Preference Learning via Error-injected Self-editing [59.405145971637204]
eRror-Injected Self-Editing (RISE) と呼ばれる新しい好み学習フレームワークを提案する。
RISEは定義済みの微妙な誤りを正しい解の部分的なトークンに注入し、エラー軽減のためにハードペアを構築する。
RISEの有効性を検証する実験では、Qwen2-7B-Instructでは、GSM8Kでは3.0%、MATHでは7.9%が顕著に改善された。
論文 参考訳(メタデータ) (2024-10-09T07:43:38Z) - Error Correction by Paying Attention to Both Acoustic and Confidence References for Automatic Speech Recognition [52.624909026294105]
本稿では,非自己回帰型音声誤り訂正法を提案する。
信頼モジュールは、N-best ASR仮説の各単語の不確実性を測定する。
提案方式は,ASRモデルと比較して誤差率を21%削減する。
論文 参考訳(メタデータ) (2024-06-29T17:56:28Z) - Parameter-tuning-free data entry error unlearning with adaptive
selective synaptic dampening [51.34904967046097]
本稿では,パラメータチューニングの必要性を排除した選択的シナプス減衰アンラーニング法の拡張を提案する。
本稿では,ResNet18とVision Transformerの未学習タスクにおける適応選択的シナプス減衰(ASSD)の性能を示す。
このアプローチの適用は、サプライチェーン管理などの産業環境において特に魅力的である。
論文 参考訳(メタデータ) (2024-02-06T14:04:31Z) - UCorrect: An Unsupervised Framework for Automatic Speech Recognition
Error Correction [18.97378605403447]
ASR誤り訂正のための教師なし検出器・ジェネレータ・セレクタ・フレームワークであるUCorrectを提案する。
パブリックAISHELL-1データセットとWenetSpeechデータセットの実験は、UCorrectの有効性を示している。
論文 参考訳(メタデータ) (2024-01-11T06:30:07Z) - Unsupervised domain adaptation for speech recognition with unsupervised
error correction [20.465220855548292]
教師なしASR領域適応のための教師なし誤り訂正法を提案する。
提案手法は,修正トレーニングサンプルを生成するために擬似ラベル法を適用した対象領域のラベル付きデータのみを必要とする。
実験の結果,非適応型ASRシステムに対する単語誤り率 (WER) の低減が得られた。
論文 参考訳(メタデータ) (2022-09-24T16:05:23Z) - Factual Error Correction for Abstractive Summaries Using Entity
Retrieval [57.01193722520597]
本稿では,エンティティ検索後処理に基づく効率的な事実誤り訂正システムRFECを提案する。
RFECは、原文と対象要約とを比較して、原文から証拠文を検索する。
次に、RFECは、エビデンス文を考慮し、要約中のエンティティレベルのエラーを検出し、エビデンス文から正確なエンティティに置換する。
論文 参考訳(メタデータ) (2022-04-18T11:35:02Z) - Error Correction in ASR using Sequence-to-Sequence Models [32.41875780785648]
自動音声認識における後編集では、ASRシステムによって生成された共通および系統的な誤りを自動的に修正する必要がある。
本稿では,事前学習型シーケンス・ツー・シーケンス・モデルであるBARTを用いて,デノナイジングモデルとして機能することを提案する。
アクセント付き音声データによる実験結果から,ASRの誤りを効果的に修正できることが示唆された。
論文 参考訳(メタデータ) (2022-02-02T17:32:59Z) - FastCorrect 2: Fast Error Correction on Multiple Candidates for
Automatic Speech Recognition [92.12910821300034]
本稿では,複数のASR候補を入力として取り込んだ誤り訂正モデルFastCorrect 2を提案する。
FastCorrect 2は、カスケードされた再描画と修正パイプラインよりも優れたパフォーマンスを実現している。
論文 参考訳(メタデータ) (2021-09-29T13:48:03Z) - FastCorrect: Fast Error Correction with Edit Alignment for Automatic
Speech Recognition [90.34177266618143]
編集アライメントに基づく新しいNAR誤り訂正モデルであるFastCorrectを提案する。
fastcorrectは推論を6-9倍高速化し、自己回帰補正モデルと比較して精度を8-14%向上させる。
ニューラルマシン翻訳で採用されている一般的なNARモデルの精度を、大きなマージンで上回っています。
論文 参考訳(メタデータ) (2021-05-09T05:35:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。