Watching Swarm Dynamics from Above: A Framework for Advanced Object Tracking in Drone Videos
- URL: http://arxiv.org/abs/2406.07680v1
- Date: Tue, 11 Jun 2024 19:57:00 GMT
- Title: Watching Swarm Dynamics from Above: A Framework for Advanced Object Tracking in Drone Videos
- Authors: Duc Pham, Matthew Hansen, FĂ©licie Dhellemmens, Jens Krause, Pia Bideau,
- Abstract summary: We propose a novel approach for tracking schools of fish in the open ocean from drone videos.
Our framework not only performs classical object tracking in 2D, instead it tracks the position and spatial expansion of the fish school in world coordinates by fusing video data and the drone's on board sensor information (GPS and IMU)
The presented framework for the first time allows researchers to study collective behavior of fish schools in its natural social and environmental context in a non-invasive and scalable way.
- Score: 2.2159863221761165
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Easily accessible sensors, like drones with diverse onboard sensors, have greatly expanded studying animal behavior in natural environments. Yet, analyzing vast, unlabeled video data, often spanning hours, remains a challenge for machine learning, especially in computer vision. Existing approaches often analyze only a few frames. Our focus is on long-term animal behavior analysis. To address this challenge, we utilize classical probabilistic methods for state estimation, such as particle filtering. By incorporating recent advancements in semantic object segmentation, we enable continuous tracking of rapidly evolving object formations, even in scenarios with limited data availability. Particle filters offer a provably optimal algorithmic structure for recursively adding new incoming information. We propose a novel approach for tracking schools of fish in the open ocean from drone videos. Our framework not only performs classical object tracking in 2D, instead it tracks the position and spatial expansion of the fish school in world coordinates by fusing video data and the drone's on board sensor information (GPS and IMU). The presented framework for the first time allows researchers to study collective behavior of fish schools in its natural social and environmental context in a non-invasive and scalable way.
Related papers
- Open3DTrack: Towards Open-Vocabulary 3D Multi-Object Tracking [73.05477052645885]
We introduce open-vocabulary 3D tracking, which extends the scope of 3D tracking to include objects beyond predefined categories.
We propose a novel approach that integrates open-vocabulary capabilities into a 3D tracking framework, allowing for generalization to unseen object classes.
arXiv Detail & Related papers (2024-10-02T15:48:42Z) - PointOdyssey: A Large-Scale Synthetic Dataset for Long-Term Point
Tracking [90.29143475328506]
We introduce PointOdyssey, a large-scale synthetic dataset, and data generation framework.
Our goal is to advance the state-of-the-art by placing emphasis on long videos with naturalistic motion.
We animate deformable characters using real-world motion capture data, we build 3D scenes to match the motion capture environments, and we render camera viewpoints using trajectories mined via structure-from-motion on real videos.
arXiv Detail & Related papers (2023-07-27T17:58:11Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
We present a training-free solution to tackle the object goal navigation problem in Embodied AI.
Our method builds a structured scene representation based on the classic visual simultaneous localization and mapping (V-SLAM) framework.
Our method propagates semantics on the scene graphs based on language priors and scene statistics to introduce semantic knowledge to the geometric frontiers.
arXiv Detail & Related papers (2023-05-26T13:38:33Z) - Event-Free Moving Object Segmentation from Moving Ego Vehicle [88.33470650615162]
Moving object segmentation (MOS) in dynamic scenes is an important, challenging, but under-explored research topic for autonomous driving.
Most segmentation methods leverage motion cues obtained from optical flow maps.
We propose to exploit event cameras for better video understanding, which provide rich motion cues without relying on optical flow.
arXiv Detail & Related papers (2023-04-28T23:43:10Z) - Semi-Supervised Visual Tracking of Marine Animals using Autonomous
Underwater Vehicles [0.40498500266986387]
In-situ visual observations of marine organisms is crucial to developing behavioural understandings and their relations to their surrounding ecosystem.
Recently, autonomous underwater vehicles equipped with cameras and embedded computers with GPU capabilities are being developed for a variety of applications.
Semi-supervised tracking algorithms may offer alternative tracking solutions because they require less data than fully-supervised counterparts.
arXiv Detail & Related papers (2023-02-14T21:08:52Z) - Multi-Object Tracking with Deep Learning Ensemble for Unmanned Aerial
System Applications [0.0]
Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications.
We present a robust object tracking architecture aimed to accommodate for the noise in real-time situations.
We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space.
arXiv Detail & Related papers (2021-10-05T13:50:38Z) - EagerMOT: 3D Multi-Object Tracking via Sensor Fusion [68.8204255655161]
Multi-object tracking (MOT) enables mobile robots to perform well-informed motion planning and navigation by localizing surrounding objects in 3D space and time.
Existing methods rely on depth sensors (e.g., LiDAR) to detect and track targets in 3D space, but only up to a limited sensing range due to the sparsity of the signal.
We propose EagerMOT, a simple tracking formulation that integrates all available object observations from both sensor modalities to obtain a well-informed interpretation of the scene dynamics.
arXiv Detail & Related papers (2021-04-29T22:30:29Z) - AcinoSet: A 3D Pose Estimation Dataset and Baseline Models for Cheetahs
in the Wild [51.35013619649463]
We present an extensive dataset of free-running cheetahs in the wild, called AcinoSet.
The dataset contains 119,490 frames of multi-view synchronized high-speed video footage, camera calibration files and 7,588 human-annotated frames.
The resulting 3D trajectories, human-checked 3D ground truth, and an interactive tool to inspect the data is also provided.
arXiv Detail & Related papers (2021-03-24T15:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.