論文の概要: AI Radiologist: Revolutionizing Liver Tissue Segmentation with Convolutional Neural Networks and a Clinician-Friendly GUI
- arxiv url: http://arxiv.org/abs/2406.07688v1
- Date: Tue, 11 Jun 2024 20:10:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 21:16:01.850475
- Title: AI Radiologist: Revolutionizing Liver Tissue Segmentation with Convolutional Neural Networks and a Clinician-Friendly GUI
- Title(参考訳): AIラジオロジスト:畳み込みニューラルネットワークと臨床用GUIによる肝組織分節の革命
- Authors: Ayman Al-Kababji, Faycal Bensaali, Sarada Prasad Dakua, Yassine Himeur,
- Abstract要約: AIラジオロジスト」は、畳み込みニューラルネットワーク(ConvNets)を用いた肝臓組織分割のためのグラフィカルユーザインタフェース(GUI)ツールである
オフラインで利用できるAIラジオロジストは、すべての肝臓組織をセグメンテーションするためにトレーニングされた3つのConvNetモデルを利用している。
肝臓、腫瘍、血管の2Dスライスを出力し、.objおよび.mtlフォーマットの3Dを出力し、任意の3D互換ソフトウェアを使って視覚化/印刷できる。
- 参考スコア(独自算出の注目度): 4.303412065407284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) is a pervasive research topic, permeating various sectors and applications. In this study, we harness the power of AI, specifically convolutional neural networks (ConvNets), for segmenting liver tissues. It also focuses on developing a user-friendly graphical user interface (GUI) tool, "AI Radiologist", enabling clinicians to effectively delineate different liver tissues (parenchyma, tumors, and vessels), thereby saving lives. This endeavor bridges the gap between academic research and practical, industrial applications. The GUI is a single-page application and is designed using the PyQt5 Python framework. The offline-available AI Radiologist resorts to three ConvNet models trained to segment all liver tissues. With respect to the Dice metric, the best liver ConvNet scores 98.16%, the best tumor ConvNet scores 65.95%, and the best vessel ConvNet scores 51.94%. It outputs 2D slices of the liver, tumors, and vessels, along with 3D interpolations in .obj and .mtl formats, which can be visualized/printed using any 3D-compatible software. Thus, the AI Radiologist offers a convenient tool for clinicians to perform liver tissue segmentation and 3D interpolation employing state-of-the-art models for tissues segmentation. With the provided capacity to select the volumes and pre-trained models, the clinicians can leave the rest to the AI Radiologist.
- Abstract(参考訳): 人工知能(AI)は、様々な分野や応用に浸透する幅広い研究トピックである。
本研究では,肝組織分割のためのAI,特に畳み込みニューラルネットワーク(ConvNets)のパワーを利用する。
また、ユーザフレンドリーなグラフィカルユーザインタフェース(GUI)ツールである"AI Radioologist"の開発にも重点を置いている。
この取り組みは、学術研究と実践的、産業的応用のギャップを埋めるものである。
GUIはシングルページアプリケーションであり、PyQt5 Pythonフレームワークを使って設計されている。
オフラインで利用できるAIラジオロジストは、すべての肝臓組織をセグメンテーションするためにトレーニングされた3つのConvNetモデルを利用している。
Diceの指標では、ベスト肝のConvNetスコアは98.16%、ベスト腫瘍のConvNetスコアは65.95%、ベスト血管のConvNetスコアは51.94%である。
肝臓、腫瘍、血管の2Dスライスと、.NETの3D補間を出力する。
objと...
これは、どんな3D互換のソフトウェアでも視覚化/プリントできる。
したがって、AIラジオロジストは、臨床医が肝組織セグメンテーションと組織セグメンテーションの最先端モデルを用いた3D補間を行うのに便利なツールを提供する。
ボリュームと事前訓練されたモデルを選択する能力が提供されるため、臨床医は残りをAIラジオロジストに委ねることができる。
関連論文リスト
- Attention-Enhanced Hybrid Feature Aggregation Network for 3D Brain Tumor Segmentation [0.9897828700959131]
グリオ芽腫は、早期診断と迅速な介入を必要とする非常に攻撃的で悪性な脳腫瘍である。
この課題に対処するため、人工知能(AI)が主導する医療のアプローチは、脳腫瘍の効率的な診断と評価に関心を寄せている。
提案手法では,マルチスケール,注意誘導型,ハイブリッドU-Net形状モデルであるGLIMSを用いて,脳腫瘍の3次元セグメント化を行う。
論文 参考訳(メタデータ) (2024-03-15T00:52:17Z) - CAFCT-Net: A CNN-Transformer Hybrid Network with Contextual and Attentional Feature Fusion for Liver Tumor Segmentation [3.8952128960495638]
肝腫瘍分節化のためのコンテクスト・アテンショナル機能FusionsEnhanced Convolutional Network (CNN) と Transformer Hybrid Network (CAFCT-Net) を提案する。
実験の結果,提案モデルの平均断面積は76.54%,Dice係数は84.29%であった。
論文 参考訳(メタデータ) (2024-01-30T10:42:11Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
本稿では,トランスフォーマーに基づく動的オンデマンドネットワーク(TransDoDNet)を提案する。
動的ヘッドにより、ネットワークは複数のセグメンテーションタスクを柔軟に達成することができる。
我々はMOTSと呼ばれる大規模にラベル付けされたMulti-Organ and tumorベンチマークを作成し、他の競合相手よりもTransDoDNetの方が優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-13T13:03:09Z) - Efficient liver segmentation with 3D CNN using computed tomography scans [0.0]
肝腫瘍による肝疾患は、世界で最も一般的な理由の1つである。
多くの画像モダリティは、肝腫瘍を検出するための補助ツールとして使用できる。
腹部CTから肝を検出・分画する効率的な自動肝分画フレームワークを提案する。
論文 参考訳(メタデータ) (2022-08-28T19:02:39Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - Hepatic vessel segmentation based on 3Dswin-transformer with inductive
biased multi-head self-attention [46.46365941681487]
Indu BIased Multi-Head Attention Vessel Net という,堅牢なエンドツーエンドのコンテナセグメンテーションネットワークを提案する。
正確な肝血管のボクセルを見つけるために,パッチワイド埋め込みよりもボクセルワイド埋め込みを導入する。
一方,絶対位置埋め込みから帰納的バイアス付き相対的位置埋め込みを学習する帰納的バイアス付きマルチヘッド自己アテンションを提案する。
論文 参考訳(メタデータ) (2021-11-05T10:17:08Z) - Learning Hybrid Representations for Automatic 3D Vessel Centerline
Extraction [57.74609918453932]
3次元医用画像からの血管の自動抽出は血管疾患の診断に不可欠である。
既存の方法では、3次元画像からそのような細い管状構造を分割する際に、抽出された容器の不連続に悩まされることがある。
抽出された船舶の連続性を維持するためには、地球的幾何学を考慮に入れる必要があると論じる。
この課題を解決するためのハイブリッド表現学習手法を提案します。
論文 参考訳(メタデータ) (2020-12-14T05:22:49Z) - Inter-slice Context Residual Learning for 3D Medical Image Segmentation [38.43650000401734]
本稿では,3次元医用画像の正確なセグメンテーションのための3次元コンテキスト残差ネットワーク(ConResNet)を提案する。
このモデルはエンコーダ、セグメンテーションデコーダ、コンテキスト残留デコーダで構成される。
提案したConResNetは,脳腫瘍セグメンテーションにおける上位6つの方法と膵腫瘍セグメンテーションにおける上位7つの方法より正確である。
論文 参考訳(メタデータ) (2020-11-28T16:03:39Z) - Upgraded W-Net with Attention Gates and its Application in Unsupervised
3D Liver Segmentation [0.0]
自動セグメンテーションのための教師なしディープラーニングに基づくアプローチを提案する。
我々はW-Netアーキテクチャを使用し、それを3Dボリュームに適用できるように修正した。
提案法は,手動セグメンテーションと比較して肝臓セグメンテーションに対するサイス係数0.88で有望な結果を示した。
論文 参考訳(メタデータ) (2020-11-20T21:45:28Z) - DoDNet: Learning to segment multi-organ and tumors from multiple
partially labeled datasets [102.55303521877933]
本稿では,複数の臓器と腫瘍を部分的にラベル付けしたデータセット上に分割する動的オンデマンドネットワーク(DoDNet)を提案する。
DoDNetは共有エンコーダデコーダアーキテクチャ、タスク符号化モジュール、動的畳み込みフィルタを生成するコントローラ、そして単一だが動的セグメンテーションヘッドで構成されている。
論文 参考訳(メタデータ) (2020-11-20T04:56:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。