Label Smoothing Improves Machine Unlearning
- URL: http://arxiv.org/abs/2406.07698v1
- Date: Tue, 11 Jun 2024 20:26:26 GMT
- Title: Label Smoothing Improves Machine Unlearning
- Authors: Zonglin Di, Zhaowei Zhu, Jinghan Jia, Jiancheng Liu, Zafar Takhirov, Bo Jiang, Yuanshun Yao, Sijia Liu, Yang Liu,
- Abstract summary: This work introduces UGradSL, a simple, plug-and-play machine unlearning approach that uses smoothed labels.
The consistent improvement in MU performance is only at a marginal cost of additional computations.
- Score: 29.611981055071197
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The objective of machine unlearning (MU) is to eliminate previously learned data from a model. However, it is challenging to strike a balance between computation cost and performance when using existing MU techniques. Taking inspiration from the influence of label smoothing on model confidence and differential privacy, we propose a simple gradient-based MU approach that uses an inverse process of label smoothing. This work introduces UGradSL, a simple, plug-and-play MU approach that uses smoothed labels. We provide theoretical analyses demonstrating why properly introducing label smoothing improves MU performance. We conducted extensive experiments on six datasets of various sizes and different modalities, demonstrating the effectiveness and robustness of our proposed method. The consistent improvement in MU performance is only at a marginal cost of additional computations. For instance, UGradSL improves over the gradient ascent MU baseline by 66% unlearning accuracy without sacrificing unlearning efficiency.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - MUSO: Achieving Exact Machine Unlearning in Over-Parameterized Regimes [19.664090734076712]
Machine unlearning (MU) makes a well-trained model behave as if it had never been trained on specific data.
We propose an alternating optimization algorithm that unifies the tasks of unlearning and relabeling.
The algorithm's effectiveness, confirmed through numerical experiments, highlights its superior performance in unlearning across various scenarios.
arXiv Detail & Related papers (2024-10-11T06:17:17Z) - Unified Gradient-Based Machine Unlearning with Remain Geometry Enhancement [29.675650285351768]
Machine unlearning (MU) has emerged to enhance the privacy and trustworthiness of deep neural networks.
Approximate MU is a practical method for large-scale models.
We propose a fast-slow parameter update strategy to implicitly approximate the up-to-date salient unlearning direction.
arXiv Detail & Related papers (2024-09-29T15:17:33Z) - SalUn: Empowering Machine Unlearning via Gradient-based Weight Saliency in Both Image Classification and Generation [30.168665935074166]
We introduce the concept of 'weight saliency' for machine unlearning, drawing parallels with input saliency in model explanation.
The resultant method that we call saliency unlearning (SalUn) narrows the performance gap with 'exact' unlearning.
SalUn is the first principled MU approach that can effectively erase the influence of forgetting data, classes, or concepts in both image classification and generation tasks.
arXiv Detail & Related papers (2023-10-19T06:17:17Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Harnessing Hard Mixed Samples with Decoupled Regularizer [69.98746081734441]
Mixup is an efficient data augmentation approach that improves the generalization of neural networks by smoothing the decision boundary with mixed data.
In this paper, we propose an efficient mixup objective function with a decoupled regularizer named Decoupled Mixup (DM)
DM can adaptively utilize hard mixed samples to mine discriminative features without losing the original smoothness of mixup.
arXiv Detail & Related papers (2022-03-21T07:12:18Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
We consider the batch active learning problem, where only a subset of the training data is labeled.
We formulate the learning problem using constrained optimization, where each constraint bounds the performance of the model on labeled samples.
We show, via numerical experiments, that our proposed approach performs similarly to or better than state-of-the-art active learning methods.
arXiv Detail & Related papers (2022-02-08T19:18:49Z) - MAML is a Noisy Contrastive Learner [72.04430033118426]
Model-agnostic meta-learning (MAML) is one of the most popular and widely-adopted meta-learning algorithms nowadays.
We provide a new perspective to the working mechanism of MAML and discover that: MAML is analogous to a meta-learner using a supervised contrastive objective function.
We propose a simple but effective technique, zeroing trick, to alleviate such interference.
arXiv Detail & Related papers (2021-06-29T12:52:26Z) - Not All Unlabeled Data are Equal: Learning to Weight Data in
Semi-supervised Learning [135.89676456312247]
We show how to use a different weight for every unlabeled example.
We adjust those weights via an algorithm based on the influence function.
We demonstrate that this technique outperforms state-of-the-art methods on semi-supervised image and language classification tasks.
arXiv Detail & Related papers (2020-07-02T17:59:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.