Personalized Product Assortment with Real-time 3D Perception and Bayesian Payoff Estimation
- URL: http://arxiv.org/abs/2406.07769v2
- Date: Thu, 13 Jun 2024 17:21:26 GMT
- Title: Personalized Product Assortment with Real-time 3D Perception and Bayesian Payoff Estimation
- Authors: Porter Jenkins, Michael Selander, J. Stockton Jenkins, Andrew Merrill, Kyle Armstrong,
- Abstract summary: We introduce a real-time recommendation system, which we call EdgeRec3D.
Our system utilizes recent advances in 3D computer vision for perception and automatic, fine grained sales estimation.
We test our system in real-world stores across two, 6-8 week A/B tests with beverage products and demonstrate a 35% and 27% increase in sales respectively.
- Score: 3.373994463906893
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Product assortment selection is a critical challenge facing physical retailers. Effectively aligning inventory with the preferences of shoppers can increase sales and decrease out-of-stocks. However, in real-world settings the problem is challenging due to the combinatorial explosion of product assortment possibilities. Consumer preferences are typically heterogeneous across space and time, making inventory-preference alignment challenging. Additionally, existing strategies rely on syndicated data, which tends to be aggregated, low resolution, and suffer from high latency. To solve these challenges, we introduce a real-time recommendation system, which we call EdgeRec3D. Our system utilizes recent advances in 3D computer vision for perception and automatic, fine grained sales estimation. These perceptual components run on the edge of the network and facilitate real-time reward signals. Additionally, we develop a Bayesian payoff model to account for noisy estimates from 3D LIDAR data. We rely on spatial clustering to allow the system to adapt to heterogeneous consumer preferences, and a graph-based candidate generation algorithm to address the combinatorial search problem. We test our system in real-world stores across two, 6-8 week A/B tests with beverage products and demonstrate a 35% and 27% increase in sales respectively. Finally, we monitor the deployed system for a period of 28 weeks with an observational study and show a 9.4% increase in sales.
Related papers
- Grasping Partially Occluded Objects Using Autoencoder-Based Point Cloud Inpainting [50.4653584592824]
Real-world applications often come with challenges that might not be considered in grasping solutions tested in simulation or lab settings.
In this paper, we present an algorithm to reconstruct the missing information.
Our inpainting solution facilitates the real-world utilization of robust object matching approaches for grasping point calculation.
arXiv Detail & Related papers (2025-03-16T15:38:08Z) - FLARES: Fast and Accurate LiDAR Multi-Range Semantic Segmentation [52.89847760590189]
3D scene understanding is a critical yet challenging task in autonomous driving.
Recent methods leverage the range-view representation to improve processing efficiency.
We re-design the workflow for range-view-based LiDAR semantic segmentation.
arXiv Detail & Related papers (2025-02-13T12:39:26Z) - Self-Localized Collaborative Perception [49.86110931859302]
We propose$mathttCoBEVGlue$, a novel self-localized collaborative perception system.
$mathttCoBEVGlue$ is a novel spatial alignment module, which provides the relative poses between agents.
$mathttCoBEVGlue$ achieves state-of-the-art detection performance under arbitrary localization noises and attacks.
arXiv Detail & Related papers (2024-06-18T15:26:54Z) - Efficient Data Distribution Estimation for Accelerated Federated Learning [5.085889377571319]
Federated Learning(FL) is a privacy-preserving machine learning paradigm where a global model is trained in-situ across a large number of distributed edge devices.
Devices are highly heterogeneous in both their system resources and training data.
Various client selection algorithms have been developed, showing promising performance improvement in terms of model coverage and accuracy.
arXiv Detail & Related papers (2024-06-03T20:33:17Z) - Find n' Propagate: Open-Vocabulary 3D Object Detection in Urban Environments [67.83787474506073]
We tackle the limitations of current LiDAR-based 3D object detection systems.
We introduce a universal textscFind n' Propagate approach for 3D OV tasks.
We achieve up to a 3.97-fold increase in Average Precision (AP) for novel object classes.
arXiv Detail & Related papers (2024-03-20T12:51:30Z) - Revolutionizing Retail Analytics: Advancing Inventory and Customer Insight with AI [0.0]
This paper introduces an innovative approach utilizing cutting-edge machine learning technologies.
We aim to create an advanced smart retail analytics system (SRAS), leveraging these technologies to enhance retail efficiency and customer engagement.
arXiv Detail & Related papers (2024-02-24T11:03:01Z) - Dual-Perspective Knowledge Enrichment for Semi-Supervised 3D Object
Detection [55.210991151015534]
We present a novel Dual-Perspective Knowledge Enrichment approach named DPKE for semi-supervised 3D object detection.
Our DPKE enriches the knowledge of limited training data, particularly unlabeled data, from two perspectives: data-perspective and feature-perspective.
arXiv Detail & Related papers (2024-01-10T08:56:07Z) - LoLep: Single-View View Synthesis with Locally-Learned Planes and
Self-Attention Occlusion Inference [66.45326873274908]
We propose a novel method, LoLep, which regresses Locally-Learned planes from a single RGB image to represent scenes accurately.
Compared to MINE, our approach has an LPIPS reduction of 4.8%-9.0% and an RV reduction of 73.9%-83.5%.
arXiv Detail & Related papers (2023-07-23T03:38:55Z) - VFed-SSD: Towards Practical Vertical Federated Advertising [53.08038962443853]
We propose a semi-supervised split distillation framework VFed-SSD to alleviate the two limitations.
Specifically, we develop a self-supervised task MatchedPair Detection (MPD) to exploit the vertically partitioned unlabeled data.
Our framework provides an efficient federation-enhanced solution for real-time display advertising with minimal deploying cost and significant performance lift.
arXiv Detail & Related papers (2022-05-31T17:45:30Z) - Designing an Efficient End-to-end Machine Learning Pipeline for
Real-time Empty-shelf Detection [0.483420384410068]
On-shelf availability (OSA) of products in retail stores is a critical business criterion.
Here, we present an elegant approach for designing an end-to-end machine learning pipeline for real-time empty shelf detection.
Our dataset contains 1000 images, collected and annotated by following well-defined guidelines.
arXiv Detail & Related papers (2022-05-25T21:51:20Z) - Approaching sales forecasting using recurrent neural networks and
transformers [57.43518732385863]
We develop three alternatives to tackle the problem of forecasting the customer sales at day/store/item level using deep learning techniques.
Our empirical results show how good performance can be achieved by using a simple sequence to sequence architecture with minimal data preprocessing effort.
The proposed solution achieves a RMSLE of around 0.54, which is competitive with other more specific solutions to the problem proposed in the Kaggle competition.
arXiv Detail & Related papers (2022-04-16T12:03:52Z) - Optimizing Offer Sets in Sub-Linear Time [5.027714423258537]
We propose an algorithm for personalized offer set optimization that runs in time sub-linear in the number of items.
Our algorithm can be entirely data-driven, relying on samples of the user, where a sample' refers to the user interaction data typically collected by firms.
arXiv Detail & Related papers (2020-11-17T13:02:56Z) - Towards in-store multi-person tracking using head detection and track
heatmaps [11.318061963422807]
We introduce a dataset collected from a camera in an office environment where participants mimic various behaviors of customers in a supermarket.
We propose a model for recognizing customers and staff based on their movement patterns.
The model is evaluated using a real-world dataset collected in a supermarket over a 24-hour period that achieves 98% accuracy during training and 93% accuracy during evaluation.
arXiv Detail & Related papers (2020-05-16T15:07:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.