VFed-SSD: Towards Practical Vertical Federated Advertising
- URL: http://arxiv.org/abs/2205.15987v4
- Date: Sat, 17 Jun 2023 13:17:36 GMT
- Title: VFed-SSD: Towards Practical Vertical Federated Advertising
- Authors: Wenjie Li, Qiaolin Xia, Junfeng Deng, Hao Cheng, Jiangming Liu,
Kouying Xue, Yong Cheng and Shu-Tao Xia
- Abstract summary: We propose a semi-supervised split distillation framework VFed-SSD to alleviate the two limitations.
Specifically, we develop a self-supervised task MatchedPair Detection (MPD) to exploit the vertically partitioned unlabeled data.
Our framework provides an efficient federation-enhanced solution for real-time display advertising with minimal deploying cost and significant performance lift.
- Score: 53.08038962443853
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As an emerging secure learning paradigm in lever-aging cross-agency private
data, vertical federatedlearning (VFL) is expected to improve advertising
models by enabling the joint learning of complementary user attributes
privately owned by the advertiser and the publisher. However, there are two key
challenges in applying it to advertising systems: a) the limited scale of
labeled overlapping samples, and b) the high cost of real-time cross-agency
serving. In this paper, we propose a semi-supervised split distillation
framework VFed-SSD to alleviate the two limitations. We identify that: i)there
are massive unlabeled overlapped data available in advertising systems, and ii)
we can keep a balance between model performance and inference cost by
decomposing the federated model. Specifically, we develop a self-supervised
task MatchedPair Detection (MPD) to exploit the vertically partitioned
unlabeled data and propose the Split Knowledge Distillation (SplitKD) schema to
avoid cross-agency serving. Empirical studies on three industrial datasets
exhibit the effectiveness of ourmethods, with the median AUC over all datasets
improved by 0.86% and 2.6% in the local andthe federated deployment mode
respectively. Overall, our framework provides an efficient federation-enhanced
solution for real-time display advertising with minimal deploying cost and
significant performance lift.
Related papers
- Stable Diffusion-based Data Augmentation for Federated Learning with Non-IID Data [9.045647166114916]
Federated Learning (FL) is a promising paradigm for decentralized and collaborative model training.
FL struggles with a significant performance reduction and poor convergence when confronted with Non-Independent and Identically Distributed (Non-IID) data distributions.
We introduce Gen-FedSD, a novel approach that harnesses the powerful capability of state-of-the-art text-to-image foundation models.
arXiv Detail & Related papers (2024-05-13T16:57:48Z) - FedAnchor: Enhancing Federated Semi-Supervised Learning with Label
Contrastive Loss for Unlabeled Clients [19.3885479917635]
Federated learning (FL) is a distributed learning paradigm that facilitates collaborative training of a shared global model across devices.
We propose FedAnchor, an innovative FSSL method that introduces a unique double-head structure, called anchor head, paired with the classification head trained exclusively on labeled anchor data on the server.
Our approach mitigates the confirmation bias and overfitting issues associated with pseudo-labeling techniques based on high-confidence model prediction samples.
arXiv Detail & Related papers (2024-02-15T18:48:21Z) - One-Shot Federated Learning with Classifier-Guided Diffusion Models [44.604485649167216]
One-shot federated learning (OSFL) has gained attention in recent years due to its low communication cost.
In this paper, we explore the novel opportunities that diffusion models bring to OSFL and propose FedCADO.
FedCADO generates data that complies with clients' distributions and subsequently training the aggregated model on the server.
arXiv Detail & Related papers (2023-11-15T11:11:25Z) - Navigating Data Heterogeneity in Federated Learning A Semi-Supervised
Federated Object Detection [3.7398615061365206]
Federated Learning (FL) has emerged as a potent framework for training models across distributed data sources.
It faces challenges with limited high-quality labels and non-IID client data, particularly in applications like autonomous driving.
We present a pioneering SSFOD framework, designed for scenarios where labeled data reside only at the server while clients possess unlabeled data.
arXiv Detail & Related papers (2023-10-26T01:40:28Z) - Unsupervised Visible-Infrared Person ReID by Collaborative Learning with Neighbor-Guided Label Refinement [53.044703127757295]
Unsupervised learning visible-infrared person re-identification (USL-VI-ReID) aims at learning modality-invariant features from unlabeled cross-modality dataset.
We propose a Dual Optimal Transport Label Assignment (DOTLA) framework to simultaneously assign the generated labels from one modality to its counterpart modality.
The proposed DOTLA mechanism formulates a mutual reinforcement and efficient solution to cross-modality data association, which could effectively reduce the side-effects of some insufficient and noisy label associations.
arXiv Detail & Related papers (2023-05-22T04:40:30Z) - Vertical Semi-Federated Learning for Efficient Online Advertising [50.18284051956359]
Semi-VFL (Vertical Semi-Federated Learning) is proposed to achieve a practical industry application fashion for VFL.
We build an inference-efficient single-party student model applicable to the whole sample space.
New representation distillation methods are designed to extract cross-party feature correlations for both the overlapped and non-overlapped data.
arXiv Detail & Related papers (2022-09-30T17:59:27Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Adversarial Dual-Student with Differentiable Spatial Warping for
Semi-Supervised Semantic Segmentation [70.2166826794421]
We propose a differentiable geometric warping to conduct unsupervised data augmentation.
We also propose a novel adversarial dual-student framework to improve the Mean-Teacher.
Our solution significantly improves the performance and state-of-the-art results are achieved on both datasets.
arXiv Detail & Related papers (2022-03-05T17:36:17Z) - Robust Semi-supervised Federated Learning for Images Automatic
Recognition in Internet of Drones [57.468730437381076]
We present a Semi-supervised Federated Learning (SSFL) framework for privacy-preserving UAV image recognition.
There are significant differences in the number, features, and distribution of local data collected by UAVs using different camera modules.
We propose an aggregation rule based on the frequency of the client's participation in training, namely the FedFreq aggregation rule.
arXiv Detail & Related papers (2022-01-03T16:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.