論文の概要: Regularizing and Aggregating Clients with Class Distribution for Personalized Federated Learning
- arxiv url: http://arxiv.org/abs/2406.07800v1
- Date: Wed, 12 Jun 2024 01:32:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 20:46:21.668832
- Title: Regularizing and Aggregating Clients with Class Distribution for Personalized Federated Learning
- Title(参考訳): 個人化フェデレーション学習のためのクラス分布によるクライアントの正規化と集約
- Authors: Gyuejeong Lee, Daeyoung Choi,
- Abstract要約: クラスワイドフェデレーション(cwFedAVG) クラスワイドで、サーバ上のクラスごとに複数のグローバルモデルを作成する。
各局所モデルは、その推定された局所クラス分布によって重み付けされたこれらの大域的モデルを統合し、深いネットワーク重みのL2ノルムから導かれる。
また,局所分布推定の精度を高めるために,新たにWDR (Weight Distribution Regularizer) を設計した。
- 参考スコア(独自算出の注目度): 0.8287206589886879
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Personalized federated learning (PFL) enables customized models for clients with varying data distributions. However, existing PFL methods often incur high computational and communication costs, limiting their practical application. This paper proposes a novel PFL method, Class-wise Federated Averaging (cwFedAVG), that performs Federated Averaging (FedAVG) class-wise, creating multiple global models per class on the server. Each local model integrates these global models weighted by its estimated local class distribution, derived from the L2-norms of deep network weights, avoiding privacy violations. Afterward, each global model does the same with local models using the same method. We also newly designed Weight Distribution Regularizer (WDR) to further enhance the accuracy of estimating a local class distribution by minimizing the Euclidean distance between the class distribution and the weight norms' distribution. Experimental results demonstrate that cwFedAVG matches or outperforms several existing PFL methods. Notably, cwFedAVG is conceptually simple yet computationally efficient as it mitigates the need for extensive calculation to collaborate between clients by leveraging shared global models. Visualizations provide insights into how cwFedAVG enables local model specialization on respective class distributions while global models capture class-relevant information across clients.
- Abstract(参考訳): パーソナライズド・フェデレーション・ラーニング(PFL)は、さまざまなデータ分散を持つクライアント向けにカスタマイズされたモデルを可能にする。
しかし、既存のPFL法はしばしば高い計算と通信コストを発生させ、実用的応用を制限している。
本稿では,FedAVG(Federated Averaging)をクラス単位で実行し,サーバ上でクラス毎に複数のグローバルモデルを生成する,新しいPFL手法であるcwFedAVGを提案する。
各ローカルモデルは、その推定ローカルクラス分布によって重み付けされたこれらのグローバルモデルを統合する。
その後、各グローバルモデルは、同じ方法を用いた局所モデルと同一となる。
また,クラス分布と重みノルム分布とのユークリッド距離を最小化し,局所クラス分布を推定する精度を高めるために,新たにWDR(Weight Distribution Regularizer)を設計した。
実験結果から,cwFedAVGは既存のPFL法よりも優れていた。
特に、cwFedAVGは概念的には単純だが計算効率が良い。
可視化は、cwFedAVGが各クラス分布のローカルモデル特殊化を可能にし、グローバルモデルがクライアント間でクラス関連情報をキャプチャする方法に関する洞察を提供する。
関連論文リスト
- Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
フェデレートラーニング(FL)は、複数のクライアントが分散した方法で協調的に学習し、プライバシ保護を可能にする。
その結果,局所モデルとグローバルモデルとのロジット差は,モデルが継続的に更新されるにつれて増大することがわかった。
我々はFedCSDと呼ばれる新しいアルゴリズムを提案する。FedCSDは、ローカルモデルとグローバルモデルを調整するためのフェデレーションフレームワークにおけるクラスプロトタイプの類似度蒸留である。
論文 参考訳(メタデータ) (2023-08-20T04:41:01Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated Learning(FL)は、複数のクライアントがローカルトレーニングを集約することで、強力なグローバルモデルを学ぶことができる分散学習パラダイムである。
本稿では,FedInsという新しいFLアルゴリズムを提案する。
我々のFedInsは、Tiny-ImageNet上での通信コストが15%未満で、トップパフォーマンスの手法に対して6.64%の改善など、最先端のFLアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-11T09:58:47Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
クロスサイロフェデレーション学習(FL)は、データセンタに分散したデータセット上での機械学習モデルの開発を可能にする。
近年の研究では、現在のFLアルゴリズムは、分布シフトに直面した場合、局所的な性能とグローバルな性能のトレードオフに直面している。
地域とグローバルのパフォーマンスのトレードオフを最適化する新しいフェデレーションモデルスープ手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T00:07:29Z) - Efficient Personalized Federated Learning via Sparse Model-Adaptation [47.088124462925684]
Federated Learning (FL)は、複数のクライアントに対して、独自のプライベートデータを共有せずに機械学習モデルをトレーニングすることを目的としている。
疎局所モデルを適応的かつ効率的に学習し,効率的なパーソナライズFLのためのpFedGateを提案する。
我々は,pFedGateが最先端手法よりも優れたグローバル精度,個人精度,効率性を同時に達成できることを示す。
論文 参考訳(メタデータ) (2023-05-04T12:21:34Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
pFedPTと呼ばれる画像分類タスクのための新しいPFLフレームワークを提案し、クライアントのローカルデータ配信情報を暗黙的に表現するためにパーソナライズされた視覚的プロンプトを利用する。
CIFAR10とCIFAR100データセットの実験では、pFedPTは様々な設定でいくつかの最先端(SOTA)PFLアルゴリズムより優れていた。
論文 参考訳(メタデータ) (2023-03-15T15:02:15Z) - Tackling Data Heterogeneity in Federated Learning with Class Prototypes [44.746340839025194]
パーソナライズと一般化の両面において,ローカルモデルの性能を改善する新しい手法であるFedNHを提案する。
クラスセマンティクスを注入することで局所モデルを改善する一方で,一様性を付与することでプロトタイプの崩壊に対処できることを示す。
論文 参考訳(メタデータ) (2022-12-06T05:15:38Z) - GRP-FED: Addressing Client Imbalance in Federated Learning via
Global-Regularized Personalization [6.592268037926868]
本稿では,データ不均衡問題に対処するため,Global-Regularized Personalization (GRP-FED)を提案する。
適応アグリゲーションでは、グローバルモデルは複数のクライアントを公平に扱い、グローバルな長期的問題を緩和する。
我々のGRP-FEDは,グローバルシナリオとローカルシナリオの両方で改善されている。
論文 参考訳(メタデータ) (2021-08-31T14:09:04Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
フェデレートラーニングは、複数のクライアントが協力してグローバルに共有されたモデルを学ぶことを可能にする。
クライアント側とサーバ側の両方の後方部を近似するために,オンラインラプラス近似を用いた新しいFLフレームワークを提案する。
提案手法の利点を実証し,いくつかのベンチマークで最新の結果を得た。
論文 参考訳(メタデータ) (2021-02-03T08:36:58Z) - Personalized Federated Learning with First Order Model Optimization [76.81546598985159]
そこで我々は,各クライアントが他のクライアントと連携して,クライアント固有の目的ごとのより強力なモデルを得る,フェデレーション学習の代替案を提案する。
基礎となるデータ分布やクライアントの類似性に関する知識を前提とせず、各クライアントが関心のある任意のターゲット分布を最適化できるようにします。
この手法は既存の代替品を上回り、ローカルデータ配信以外の転送のようなパーソナライズされたFLの新機能を可能にする。
論文 参考訳(メタデータ) (2020-12-15T19:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。