論文の概要: Evolutionary Computation and Explainable AI: A Roadmap to Understandable Intelligent Systems
- arxiv url: http://arxiv.org/abs/2406.07811v2
- Date: Thu, 17 Oct 2024 07:00:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-18 13:17:40.610971
- Title: Evolutionary Computation and Explainable AI: A Roadmap to Understandable Intelligent Systems
- Title(参考訳): 進化的計算と説明可能なAI: 理解可能なインテリジェントシステムへの道程
- Authors: Ryan Zhou, Jaume Bacardit, Alexander Brownlee, Stefano Cagnoni, Martin Fyvie, Giovanni Iacca, John McCall, Niki van Stein, David Walker, Ting Hu,
- Abstract要約: 進化的計算(EC)は、説明可能なAI(XAI)に寄与する大きな可能性を提供する
本稿では、XAIの紹介を行い、機械学習モデルを説明するための現在の技術についてレビューする。
次に、ECがXAIでどのように活用できるかを検討し、ECテクニックを取り入れた既存のXAIアプローチを調べます。
- 参考スコア(独自算出の注目度): 37.02462866600066
- License:
- Abstract: Artificial intelligence methods are being increasingly applied across various domains, but their often opaque nature has raised concerns about accountability and trust. In response, the field of explainable AI (XAI) has emerged to address the need for human-understandable AI systems. Evolutionary computation (EC), a family of powerful optimization and learning algorithms, offers significant potential to contribute to XAI, and vice versa. This paper provides an introduction to XAI and reviews current techniques for explaining machine learning models. We then explore how EC can be leveraged in XAI and examine existing XAI approaches that incorporate EC techniques. Furthermore, we discuss the application of XAI principles within EC itself, investigating how these principles can illuminate the behavior and outcomes of EC algorithms, their (automatic) configuration, and the underlying problem landscapes they optimize. Finally, we discuss open challenges in XAI and highlight opportunities for future research at the intersection of XAI and EC. Our goal is to demonstrate EC's suitability for addressing current explainability challenges and to encourage further exploration of these methods, ultimately contributing to the development of more understandable and trustworthy ML models and EC algorithms.
- Abstract(参考訳): 人工知能の手法は、さまざまな領域にまたがってますます適用されているが、その不透明な性質はしばしば説明責任と信頼に関する懸念を引き起こしている。
これに対し、人間の理解可能なAIシステムの必要性に対処するために、説明可能なAI(XAI)の分野が出現した。
進化的計算(EC)は、強力な最適化と学習アルゴリズムのファミリーであり、XAIに貢献する大きな可能性を秘めている。
本稿では,XAIについて紹介し,機械学習モデルを説明するための現在の技術についてレビューする。
次に、ECがXAIでどのように活用できるかを検討し、ECテクニックを取り入れた既存のXAIアプローチを調べます。
さらに、EC自体におけるXAI原則の適用について論じ、これらの原則がECアルゴリズムの動作と結果、その(自動)構成、そして最適化される根底にある問題状況をどのように照らし出すことができるのかを考察する。
最後に、XAIにおけるオープンな課題について議論し、XAIとECの交差点における今後の研究の機会を強調します。
私たちのゴールは、現在の説明可能性問題に対処するECの適合性を実証し、これらのメソッドのさらなる探索を奨励し、最終的にはより理解しやすく信頼性の高いMLモデルとECアルゴリズムの開発に寄与することにあります。
関連論文リスト
- Applications of Explainable artificial intelligence in Earth system science [12.454478986296152]
このレビューは、説明可能なAI(XAI)の基礎的な理解を提供することを目的としている。
XAIはモデルをより透明にする強力なツールセットを提供する。
我々は、地球系科学(ESS)において、XAIが直面する4つの重要な課題を識別する。
AIモデルは未知を探索し、XAIは説明を提供することでギャップを埋める。
論文 参考訳(メタデータ) (2024-06-12T15:05:29Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
本稿では,人工知能(AI)ツールによる認知学習のためのインテリジェントシステム(CL-XAI)を提案する。
CL-XAIの使用は、学習者が問題解決スキルを高めるために問題に取り組むゲームインスパイアされた仮想ユースケースで説明される。
論文 参考訳(メタデータ) (2023-12-19T16:13:47Z) - Evolutionary approaches to explainable machine learning [6.274453963224799]
機械学習モデルは、重要なセクターでますます使われているが、そのブラックボックスの性質は、説明責任と信頼に関する懸念を引き起こしている。
説明可能な人工知能(XAI)や説明可能な機械学習(XML)の分野は、これらのモデルの人間的理解の必要性に応えて現れた。
進化的コンピューティングは、強力な最適化と学習ツールのファミリーとして、XAI/XMLに貢献する大きな可能性を秘めています。
論文 参考訳(メタデータ) (2023-06-23T16:47:49Z) - Seamful XAI: Operationalizing Seamful Design in Explainable AI [59.89011292395202]
AIシステムのミスは必然的であり、技術的制限と社会技術的ギャップの両方から生じる。
本稿では, 社会工学的・インフラ的ミスマッチを明らかにすることにより, シームレスな設計がAIの説明可能性を高めることを提案する。
43人のAI実践者と実際のエンドユーザでこのプロセスを探求します。
論文 参考訳(メタデータ) (2022-11-12T21:54:05Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - Human-Centered Explainable AI (XAI): From Algorithms to User Experiences [29.10123472973571]
説明可能なAI(XAI)は近年,膨大なアルゴリズムコレクションを生み出している。
分野は学際的視点と人間中心のアプローチを受け入れ始めている。
論文 参考訳(メタデータ) (2021-10-20T21:33:46Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Explainable Artificial Intelligence (XAI): An Engineering Perspective [0.0]
XAIは、いわゆるブラックボックスAIアルゴリズムをホワイトボックスアルゴリズムに変換するテクニックと方法のセットです。
XAIのステークホルダを議論し、エンジニアリングの観点からXAIの数学的輪郭を説明します。
この研究は、XAIの分野における研究の新しい道を特定するための探索的研究です。
論文 参考訳(メタデータ) (2021-01-10T19:49:12Z) - Opportunities and Challenges in Explainable Artificial Intelligence
(XAI): A Survey [2.7086321720578623]
深層ニューラルネットワークのブラックボックスの性質は、ミッションクリティカルなアプリケーションでの利用に挑戦する。
XAIは、AI決定に関する高品質な解釈可能、直感的、人間に理解可能な説明を生成するためのツール、テクニック、アルゴリズムのセットを推進している。
論文 参考訳(メタデータ) (2020-06-16T02:58:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。