論文の概要: DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition
- arxiv url: http://arxiv.org/abs/2406.07852v1
- Date: Wed, 12 Jun 2024 03:40:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 18:34:46.499063
- Title: DiffPop: Plausibility-Guided Object Placement Diffusion for Image Composition
- Title(参考訳): DiffPop:画像合成のための可塑性誘導物体配置拡散
- Authors: Jiacheng Liu, Hang Zhou, Shida Wei, Rui Ma,
- Abstract要約: DiffPopは、複数のオブジェクトと対応するシーンイメージのスケールと空間の関係を学習するフレームワークである。
本研究では,拡散合成画像上での人間のラベル付けを生かした,ループ内人間パイプラインを開発した。
データセットとコードはリリースされます。
- 参考スコア(独自算出の注目度): 13.341996441742374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we address the problem of plausible object placement for the challenging task of realistic image composition. We propose DiffPop, the first framework that utilizes plausibility-guided denoising diffusion probabilistic model to learn the scale and spatial relations among multiple objects and the corresponding scene image. First, we train an unguided diffusion model to directly learn the object placement parameters in a self-supervised manner. Then, we develop a human-in-the-loop pipeline which exploits human labeling on the diffusion-generated composite images to provide the weak supervision for training a structural plausibility classifier. The classifier is further used to guide the diffusion sampling process towards generating the plausible object placement. Experimental results verify the superiority of our method for producing plausible and diverse composite images on the new Cityscapes-OP dataset and the public OPA dataset, as well as demonstrate its potential in applications such as data augmentation and multi-object placement tasks. Our dataset and code will be released.
- Abstract(参考訳): 本稿では,現実的な画像合成の課題に対して,プラウチブルな物体配置の問題に対処する。
DiffPopは、複数のオブジェクトと対応するシーンイメージのスケールと空間の関係を学習するために、可視性誘導拡散確率モデルを利用する最初のフレームワークである。
まず,対象の配置パラメータを直接自己監督的に学習するために,非誘導拡散モデルを訓練する。
そこで我々は, 拡散合成画像上での人間のラベル付けを利用して, 構造的可視性分類器を訓練するための弱い監督を提供する, ループ内人間パイプラインを開発した。
さらに、この分類器は、拡散サンプリング過程を、可塑性物体配置の生成に導くためにも用いられる。
実験により,新しいCityscapes-OPデータセットとパブリックOPAデータセットを用いた多種多様な複合画像の作成方法の優位性を検証するとともに,データ拡張や多目的配置タスクなどの応用におけるその可能性を示す。
データセットとコードはリリースされます。
関連論文リスト
- Contrasting Deepfakes Diffusion via Contrastive Learning and Global-Local Similarities [88.398085358514]
Contrastive Deepfake Embeddings (CoDE)は、ディープフェイク検出に特化した新しい埋め込み空間である。
CoDEは、グローバルローカルな類似性をさらに強化することで、対照的な学習を通じて訓練される。
論文 参考訳(メタデータ) (2024-07-29T18:00:10Z) - FreeCompose: Generic Zero-Shot Image Composition with Diffusion Prior [50.0535198082903]
我々は,複数の入力イメージを単一のコヒーレントなイメージに統合する,新しい画像合成手法を提案する。
本稿では, 大規模事前学習拡散モデルに内在する強力な生成的前駆体を利用して, 汎用画像合成を実現する可能性を示す。
論文 参考訳(メタデータ) (2024-07-06T03:35:43Z) - A Phase Transition in Diffusion Models Reveals the Hierarchical Nature
of Data [55.748186000425996]
最近の進歩は、拡散モデルが高品質な画像を生成することを示している。
我々はこの現象を階層的なデータ生成モデルで研究する。
本分析は拡散モデルにおける時間とスケールの関係を特徴付ける。
論文 参考訳(メタデータ) (2024-02-26T19:52:33Z) - Intrinsic Image Diffusion for Indoor Single-view Material Estimation [55.276815106443976]
室内シーンの外観分解のための生成モデルIntrinsic Image Diffusionを提案する。
1つの入力ビューから、アルベド、粗さ、および金属地図として表される複数の材料説明をサンプリングする。
提案手法は,PSNRで1.5dB$,アルベド予測で45%のFIDスコアを達成し,よりシャープで,より一貫性があり,より詳細な資料を生成する。
論文 参考訳(メタデータ) (2023-12-19T15:56:19Z) - ControlCom: Controllable Image Composition using Diffusion Model [45.48263800282992]
1つの拡散モデルにおいて4つのタスクを統一する制御可能な画像合成法を提案する。
また,拡散モデルにおける前景の詳細を強化するために,局所的な拡張モジュールを提案する。
提案手法は,公開ベンチマークと実世界のデータの両方を用いて評価する。
論文 参考訳(メタデータ) (2023-08-19T14:56:44Z) - TF-ICON: Diffusion-Based Training-Free Cross-Domain Image Composition [13.087647740473205]
TF-ICONは、クロスドメイン画像誘導合成のためのテキスト駆動拡散モデルのパワーを利用するフレームワークである。
TF-ICONはオフザシェルフ拡散モデルを利用して、追加のトレーニング、微調整、最適化を必要とせずに、クロスドメイン画像誘導合成を実行することができる。
実験により, 安定拡散と例外的なプロンプトとを併用することで, 各種データセット上での最先端の逆解析法より優れた性能が得られた。
論文 参考訳(メタデータ) (2023-07-24T02:50:44Z) - Cross-domain Compositing with Pretrained Diffusion Models [34.98199766006208]
我々は,背景シーンから抽出した文脈情報で注入対象を注入する局所的反復的精錬方式を採用する。
本手法では,アノテーションやトレーニングを必要とせず,高品質で現実的な結果が得られる。
論文 参考訳(メタデータ) (2023-02-20T18:54:04Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
本研究では,高忠実度人物画像合成に拡散モデルをいかに応用できるかを示す。
2つの大規模ベンチマークとユーザスタディの結果は、挑戦的なシナリオ下で提案したアプローチのフォトリアリズムを実証している。
論文 参考訳(メタデータ) (2022-11-22T18:59:50Z) - Compositional Visual Generation with Composable Diffusion Models [80.75258849913574]
拡散モデルを用いた構成生成のための代替的な構造的アプローチを提案する。
画像は拡散モデルの集合を構成することで生成され、それぞれが画像の特定のコンポーネントをモデル化する。
提案手法は, トレーニングで見られるものよりもはるかに複雑なシーンを, テスト時に生成することができる。
論文 参考訳(メタデータ) (2022-06-03T17:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。