Small Scale Data-Free Knowledge Distillation
- URL: http://arxiv.org/abs/2406.07876v1
- Date: Wed, 12 Jun 2024 05:09:41 GMT
- Title: Small Scale Data-Free Knowledge Distillation
- Authors: He Liu, Yikai Wang, Huaping Liu, Fuchun Sun, Anbang Yao,
- Abstract summary: We propose Small Scale Data-free Knowledge Distillation SSD-KD.
SSD-KD balances synthetic samples and a priority sampling function to select proper samples.
It can perform distillation training conditioned on an extremely small scale of synthetic samples.
- Score: 37.708282211941416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-free knowledge distillation is able to utilize the knowledge learned by a large teacher network to augment the training of a smaller student network without accessing the original training data, avoiding privacy, security, and proprietary risks in real applications. In this line of research, existing methods typically follow an inversion-and-distillation paradigm in which a generative adversarial network on-the-fly trained with the guidance of the pre-trained teacher network is used to synthesize a large-scale sample set for knowledge distillation. In this paper, we reexamine this common data-free knowledge distillation paradigm, showing that there is considerable room to improve the overall training efficiency through a lens of ``small-scale inverted data for knowledge distillation". In light of three empirical observations indicating the importance of how to balance class distributions in terms of synthetic sample diversity and difficulty during both data inversion and distillation processes, we propose Small Scale Data-free Knowledge Distillation SSD-KD. In formulation, SSD-KD introduces a modulating function to balance synthetic samples and a priority sampling function to select proper samples, facilitated by a dynamic replay buffer and a reinforcement learning strategy. As a result, SSD-KD can perform distillation training conditioned on an extremely small scale of synthetic samples (e.g., 10X less than the original training data scale), making the overall training efficiency one or two orders of magnitude faster than many mainstream methods while retaining superior or competitive model performance, as demonstrated on popular image classification and semantic segmentation benchmarks. The code is available at https://github.com/OSVAI/SSD-KD.
Related papers
- Fast Machine Unlearning Without Retraining Through Selective Synaptic
Dampening [51.34904967046097]
Selective Synaptic Dampening (SSD) is a fast, performant, and does not require long-term storage of the training data.
We present a novel two-step, post hoc, retrain-free approach to machine unlearning which is fast, performant, and does not require long-term storage of the training data.
arXiv Detail & Related papers (2023-08-15T11:30:45Z) - Distribution Shift Matters for Knowledge Distillation with Webly
Collected Images [91.66661969598755]
We propose a novel method dubbed Knowledge Distillation between Different Distributions" (KD$3$)
We first dynamically select useful training instances from the webly collected data according to the combined predictions of teacher network and student network.
We also build a new contrastive learning block called MixDistribution to generate perturbed data with a new distribution for instance alignment.
arXiv Detail & Related papers (2023-07-21T10:08:58Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - Self-Knowledge Distillation via Dropout [0.7883397954991659]
We propose a simple and effective self-knowledge distillation method using a dropout (SD-Dropout)
Our method does not require any additional trainable modules, does not rely on data, and requires only simple operations.
arXiv Detail & Related papers (2022-08-11T05:08:55Z) - Prompting to Distill: Boosting Data-Free Knowledge Distillation via
Reinforced Prompt [52.6946016535059]
Data-free knowledge distillation (DFKD) conducts knowledge distillation via eliminating the dependence of original training data.
We propose a prompt-based method, termed as PromptDFD, that allows us to take advantage of learned language priors.
As shown in our experiments, the proposed method substantially improves the synthesis quality and achieves considerable improvements on distillation performance.
arXiv Detail & Related papers (2022-05-16T08:56:53Z) - Robust and Resource-Efficient Data-Free Knowledge Distillation by Generative Pseudo Replay [5.3330804968579795]
Data-Free Knowledge Distillation (KD) allows knowledge transfer from a trained neural network (teacher) to a more compact one (student) in the absence of original training data.
Existing works use a validation set to monitor the accuracy of the student over real data and report the highest performance throughout the entire process.
However, validation data may not be available at distillation time either, making it infeasible to record the student snapshot that achieved the peak accuracy.
This is challenging because the student experiences knowledge degradation due to the distribution shift of the synthetic data.
We propose to model the distribution of the previously observed synthetic samples
arXiv Detail & Related papers (2022-01-09T14:14:28Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
Online Self-Acquired Knowledge Distillation (OSAKD) is proposed, aiming to improve the performance of any deep neural model in an online manner.
We utilize k-nn non-parametric density estimation technique for estimating the unknown probability distributions of the data samples in the output feature space.
arXiv Detail & Related papers (2021-08-26T14:01:04Z) - Dual Discriminator Adversarial Distillation for Data-free Model
Compression [36.49964835173507]
We propose Dual Discriminator Adversarial Distillation (DDAD) to distill a neural network without any training data or meta-data.
To be specific, we use a generator to create samples through dual discriminator adversarial distillation, which mimics the original training data.
The proposed method obtains an efficient student network which closely approximates its teacher network, despite using no original training data.
arXiv Detail & Related papers (2021-04-12T12:01:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.