An Empirical Study of Mamba-based Language Models
- URL: http://arxiv.org/abs/2406.07887v1
- Date: Wed, 12 Jun 2024 05:25:15 GMT
- Title: An Empirical Study of Mamba-based Language Models
- Authors: Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao, Albert Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, Garvit Kulshreshtha, Vartika Singh, Jared Casper, Jan Kautz, Mohammad Shoeybi, Bryan Catanzaro,
- Abstract summary: Selective state-space models (SSMs) like Mamba overcome some shortcomings of Transformers.
We present a direct comparison between 8B-context Mamba, Mamba-2, and Transformer models trained on the same datasets.
We find that the 8B Mamba-2-Hybrid exceeds the 8B Transformer on all 12 standard tasks.
- Score: 69.74383762508805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Selective state-space models (SSMs) like Mamba overcome some of the shortcomings of Transformers, such as quadratic computational complexity with sequence length and large inference-time memory requirements from the key-value cache. Moreover, recent studies have shown that SSMs can match or exceed the language modeling capabilities of Transformers, making them an attractive alternative. In a controlled setting (e.g., same data), however, studies so far have only presented small scale experiments comparing SSMs to Transformers. To understand the strengths and weaknesses of these architectures at larger scales, we present a direct comparison between 8B-parameter Mamba, Mamba-2, and Transformer models trained on the same datasets of up to 3.5T tokens. We also compare these models to a hybrid architecture consisting of 43% Mamba-2, 7% attention, and 50% MLP layers (Mamba-2-Hybrid). Using a diverse set of tasks, we answer the question of whether Mamba models can match Transformers at larger training budgets. Our results show that while pure SSMs match or exceed Transformers on many tasks, they lag behind Transformers on tasks which require strong copying or in-context learning abilities (e.g., 5-shot MMLU, Phonebook) or long-context reasoning. In contrast, we find that the 8B Mamba-2-Hybrid exceeds the 8B Transformer on all 12 standard tasks we evaluated (+2.65 points on average) and is predicted to be up to 8x faster when generating tokens at inference time. To validate long-context capabilities, we provide additional experiments evaluating variants of the Mamba-2-Hybrid and Transformer extended to support 16K, 32K, and 128K sequences. On an additional 23 long-context tasks, the hybrid model continues to closely match or exceed the Transformer on average. To enable further study, we release the checkpoints as well as the code used to train our models as part of NVIDIA's Megatron-LM project.
Related papers
- Bi-Mamba: Towards Accurate 1-Bit State Space Models [28.478762133816726]
Bi-Mamba is a scalable and powerful 1-bit Mamba architecture designed for more efficient large language models.
Bi-Mamba achieves performance comparable to its full-precision counterparts (e.g., FP16 or BF16) and much better accuracy than post-training-binarization (PTB) Mamba baselines.
arXiv Detail & Related papers (2024-11-18T18:59:15Z) - MaskMamba: A Hybrid Mamba-Transformer Model for Masked Image Generation [63.73137438677585]
MaskMamba is a novel hybrid model that combines Mamba and Transformer architectures.
It achieves a remarkable $54.44%$ improvement in inference speed at a resolution of $2048times 2048$ over Transformer.
arXiv Detail & Related papers (2024-09-30T04:28:55Z) - The Mamba in the Llama: Distilling and Accelerating Hybrid Models [76.64055251296548]
We show that it is feasible to distill large Transformers into linear RNNs by reusing the linear projection weights from attention layers with academic GPU resources.
The resulting hybrid model, which incorporates a quarter of the attention layers, achieves performance comparable to the original Transformer in chat benchmarks.
arXiv Detail & Related papers (2024-08-27T17:56:11Z) - Transformers to SSMs: Distilling Quadratic Knowledge to Subquadratic Models [92.36510016591782]
We present a method that is able to distill a pretrained Transformer architecture into alternative architectures such as state space models (SSMs)
Our method, called MOHAWK, is able to distill a Mamba-2 variant based on the Phi-1.5 architecture using only 3B tokens and a hybrid version (Hybrid Phi-Mamba) using 5B tokens.
Despite using less than 1% of the training data typically used to train models from scratch, Phi-Mamba boasts substantially stronger performance compared to all past open-source non-Transformer models.
arXiv Detail & Related papers (2024-08-19T17:48:11Z) - How Effective are State Space Models for Machine Translation? [19.509486069758495]
Transformers are the current architecture of choice for NLP, but their attention layers do not scale well to long contexts.
Recent works propose to replace attention with linear recurrent layers.
It remains unclear whether these models are competitive with transformers in machine translation.
arXiv Detail & Related papers (2024-07-07T20:21:49Z) - Mamba State-Space Models Are Lyapunov-Stable Learners [1.6385815610837167]
Mamba state-space models (SSMs) were recently shown to outperform Transformer large language models (LLMs) across various tasks.
We show that Mamba's recurrent dynamics are robust to small input changes.
We also show that instruction tuning allows Mamba models to narrow this gap to 81% and Mamba-2 models to skyrocket over this gap to 132%.
arXiv Detail & Related papers (2024-05-31T21:46:23Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
State of the art foundation models such as GPT-4 perform surprisingly well at in-context learning (ICL)
This work provides empirical evidence that Mamba, a newly proposed state space model, has similar ICL capabilities.
arXiv Detail & Related papers (2024-02-05T16:39:12Z) - Long Range Arena: A Benchmark for Efficient Transformers [115.1654897514089]
Long-rangearena benchmark is a suite of tasks consisting of sequences ranging from $1K$ to $16K$ tokens.
We systematically evaluate ten well-established long-range Transformer models on our newly proposed benchmark suite.
arXiv Detail & Related papers (2020-11-08T15:53:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.