Mamba State-Space Models Are Lyapunov-Stable Learners
- URL: http://arxiv.org/abs/2406.00209v2
- Date: Tue, 15 Oct 2024 19:21:58 GMT
- Title: Mamba State-Space Models Are Lyapunov-Stable Learners
- Authors: John T. Halloran, Manbir Gulati, Paul F. Roysdon,
- Abstract summary: Mamba state-space models (SSMs) were recently shown to outperform Transformer large language models (LLMs) across various tasks.
We show that Mamba's recurrent dynamics are robust to small input changes.
We also show that instruction tuning allows Mamba models to narrow this gap to 81% and Mamba-2 models to skyrocket over this gap to 132%.
- Score: 1.6385815610837167
- License:
- Abstract: Mamba state-space models (SSMs) were recently shown to outperform state-of-the-art (SOTA) Transformer large language models (LLMs) across various tasks. Despite subsequent widespread adaptation, little work has focused on Mamba LLMs' amenability for fine-tuning frameworks ubiquitously used for Transformer-based LLMs, e.g., mixed-precision fine-tuning (MPFT) and parameter-efficient fine-tuning (PEFT). For the former, it currently remains an open question whether Mamba's recurrent dynamics are robust to small input changes, such as those encountered during MPFT. Using dynamical systems theory (in particular, Lyapunov exponents), we answer this question in the affirmative. We empirically validate this result through several experiments, showing that Mamba SSMs are significantly more stable to changes introduced by mixed-precision than comparable Transformers, even when both MPFT and PEFT are combined. For PEFT, we show how targeting specific memory buffers in Mamba's customized CUDA kernels for low-rank adaptation regularizes SSM parameters, thus providing both parameter efficient learning and computational savings. Finally, with both MPFT and PEFT enabled, we explore the impact of instruction tuning Mamba SSMs for in-context learning (ICL) on natural language tasks. While pretrained Mamba and Mamba-2 models only achieve 38% and 82% (respectively) of the ICL improvements of comparable Transformer-based LLMs, we show that instruction tuning allows Mamba models to narrow this gap to 81% and Mamba-2 models to skyrocket over this gap to 132%.
Related papers
- MambaPEFT: Exploring Parameter-Efficient Fine-Tuning for Mamba [0.5530212768657544]
Mamba, a State Space Model (SSM)-based model, has attracted attention as a potential alternative to Transformers.
We investigate the effectiveness of existing PEFT methods for Transformers when applied to Mamba.
We propose new Mamba-specific PEFT methods that leverage the distinctive structure of Mamba.
arXiv Detail & Related papers (2024-11-06T11:57:55Z) - Mamba for Scalable and Efficient Personalized Recommendations [0.135975510645475]
We present a novel hybrid model that replaces Transformer layers with Mamba layers within the FT-Transformer architecture.
We evaluate FT-Mamba in comparison to a traditional Transformer-based model within a Two-Tower architecture on three datasets.
arXiv Detail & Related papers (2024-09-11T14:26:14Z) - Sparse Mamba: Reinforcing Controllability In Structural State Space Models [2.6353853440763118]
We introduce the concept of controllability and observability to the Mamba SSM's architecture in our Sparse-Mamba (S-Mamba) for natural language processing (NLP) applications.
arXiv Detail & Related papers (2024-08-31T23:25:12Z) - ReMamba: Equip Mamba with Effective Long-Sequence Modeling [50.530839868893786]
We propose ReMamba, which enhances Mamba's ability to comprehend long contexts.
ReMamba incorporates selective compression and adaptation techniques within a two-stage re-forward process.
arXiv Detail & Related papers (2024-08-28T02:47:27Z) - Mixture-of-Modules: Reinventing Transformers as Dynamic Assemblies of Modules [96.21649779507831]
We propose a novel architecture dubbed mixture-of-modules (MoM)
MoM is motivated by an intuition that any layer, regardless of its position, can be used to compute a token.
We show that MoM provides not only a unified framework for Transformers but also a flexible and learnable approach for reducing redundancy.
arXiv Detail & Related papers (2024-07-09T08:50:18Z) - DeciMamba: Exploring the Length Extrapolation Potential of Mamba [89.07242846058023]
We introduce DeciMamba, a context-extension method specifically designed for Mamba.
We show that DeciMamba can extrapolate context lengths 25x longer than the ones seen during training, and does so without utilizing additional computational resources.
arXiv Detail & Related papers (2024-06-20T17:40:18Z) - An Empirical Study of Mamba-based Language Models [69.74383762508805]
Selective state-space models (SSMs) like Mamba overcome some shortcomings of Transformers.
We present a direct comparison between 8B-context Mamba, Mamba-2, and Transformer models trained on the same datasets.
We find that the 8B Mamba-2-Hybrid exceeds the 8B Transformer on all 12 standard tasks.
arXiv Detail & Related papers (2024-06-12T05:25:15Z) - Is Mamba Capable of In-Context Learning? [63.682741783013306]
State of the art foundation models such as GPT-4 perform surprisingly well at in-context learning (ICL)
This work provides empirical evidence that Mamba, a newly proposed state space model, has similar ICL capabilities.
arXiv Detail & Related papers (2024-02-05T16:39:12Z) - BlackMamba: Mixture of Experts for State-Space Models [10.209192169793772]
State-space models (SSMs) have recently demonstrated competitive performance to transformers at large-scale language modeling benchmarks.
MoE models have shown remarkable performance while significantly reducing the compute and latency costs of inference.
We present BlackMamba, a novel architecture that combines the Mamba SSM with MoE to obtain the benefits of both.
arXiv Detail & Related papers (2024-02-01T07:15:58Z) - MambaByte: Token-free Selective State Space Model [71.90159903595514]
MambaByte is a token-free adaptation of the Mamba SSM trained autoregressively on byte sequences.
We show MambaByte to be competitive with, and even to outperform, state-of-the-art subword Transformers on language modeling tasks.
arXiv Detail & Related papers (2024-01-24T18:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.