Accurate Explanation Model for Image Classifiers using Class Association Embedding
- URL: http://arxiv.org/abs/2406.07961v1
- Date: Wed, 12 Jun 2024 07:41:00 GMT
- Title: Accurate Explanation Model for Image Classifiers using Class Association Embedding
- Authors: Ruitao Xie, Jingbang Chen, Limai Jiang, Rui Xiao, Yi Pan, Yunpeng Cai,
- Abstract summary: We propose a generative explanation model that combines the advantages of global and local knowledge.
Class association embedding (CAE) encodes each sample into a pair of separated class-associated and individual codes.
Building-block coherency feature extraction algorithm is proposed that efficiently separates class-associated features from individual ones.
- Score: 5.378105759529487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image classification is a primary task in data analysis where explainable models are crucially demanded in various applications. Although amounts of methods have been proposed to obtain explainable knowledge from the black-box classifiers, these approaches lack the efficiency of extracting global knowledge regarding the classification task, thus is vulnerable to local traps and often leads to poor accuracy. In this study, we propose a generative explanation model that combines the advantages of global and local knowledge for explaining image classifiers. We develop a representation learning method called class association embedding (CAE), which encodes each sample into a pair of separated class-associated and individual codes. Recombining the individual code of a given sample with altered class-associated code leads to a synthetic real-looking sample with preserved individual characters but modified class-associated features and possibly flipped class assignments. A building-block coherency feature extraction algorithm is proposed that efficiently separates class-associated features from individual ones. The extracted feature space forms a low-dimensional manifold that visualizes the classification decision patterns. Explanation on each individual sample can be then achieved in a counter-factual generation manner which continuously modifies the sample in one direction, by shifting its class-associated code along a guided path, until its classification outcome is changed. We compare our method with state-of-the-art ones on explaining image classification tasks in the form of saliency maps, demonstrating that our method achieves higher accuracies. The code is available at https://github.com/xrt11/XAI-CODE.
Related papers
- Preview-based Category Contrastive Learning for Knowledge Distillation [53.551002781828146]
We propose a novel preview-based category contrastive learning method for knowledge distillation (PCKD)
It first distills the structural knowledge of both instance-level feature correspondence and the relation between instance features and category centers.
It can explicitly optimize the category representation and explore the distinct correlation between representations of instances and categories.
arXiv Detail & Related papers (2024-10-18T03:31:00Z) - Active Globally Explainable Learning for Medical Images via Class
Association Embedding and Cyclic Adversarial Generation [3.0638691735355374]
Current studies on explainable AI (XAI) lack the efficiency of extracting global knowledge about the learning task.
We propose the class association embedding (CAE) approach to address these issues.
We adopt the framework on medical image classification tasks, which show that more precise saliency maps with powerful context-aware representation can be achieved.
arXiv Detail & Related papers (2023-06-12T04:51:32Z) - Text2Model: Text-based Model Induction for Zero-shot Image Classification [38.704831945753284]
We address the challenge of building task-agnostic classifiers using only text descriptions.
We generate zero-shot classifiers using a hypernetwork that receives class descriptions and outputs a multi-class model.
We evaluate this approach in a series of zero-shot classification tasks, for image, point-cloud, and action recognition, using a range of text descriptions.
arXiv Detail & Related papers (2022-10-27T05:19:55Z) - Fine-Grained Visual Classification using Self Assessment Classifier [12.596520707449027]
Extracting discriminative features plays a crucial role in the fine-grained visual classification task.
In this paper, we introduce a Self Assessment, which simultaneously leverages the representation of the image and top-k prediction classes.
We show that our method achieves new state-of-the-art results on CUB200-2011, Stanford Dog, and FGVC Aircraft datasets.
arXiv Detail & Related papers (2022-05-21T07:41:27Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
We propose a model-agnostic and training scheme for semantic segmentation.
By randomly eliminating certain class information in each training iteration, we effectively reduce feature dependencies among classes.
Models trained with our approach demonstrate strong results on multiple semantic segmentation benchmarks.
arXiv Detail & Related papers (2021-10-31T16:15:09Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
Generalized Zero-Shot Learning (GZSL) is the task of leveraging semantic information (e.g., attributes) to recognize the seen and unseen samples, where unseen classes are not observable during training.
We propose a novel Generation Shifts Mitigating Flow framework for learning unseen data synthesis efficiently and effectively.
Experimental results demonstrate that GSMFlow achieves state-of-the-art recognition performance in both conventional and generalized zero-shot settings.
arXiv Detail & Related papers (2021-07-07T11:43:59Z) - ECKPN: Explicit Class Knowledge Propagation Network for Transductive
Few-shot Learning [53.09923823663554]
Class-level knowledge can be easily learned by humans from just a handful of samples.
We propose an Explicit Class Knowledge Propagation Network (ECKPN) to address this problem.
We conduct extensive experiments on four few-shot classification benchmarks, and the experimental results show that the proposed ECKPN significantly outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2021-06-16T02:29:43Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Learning and Evaluating Representations for Deep One-class
Classification [59.095144932794646]
We present a two-stage framework for deep one-class classification.
We first learn self-supervised representations from one-class data, and then build one-class classifiers on learned representations.
In experiments, we demonstrate state-of-the-art performance on visual domain one-class classification benchmarks.
arXiv Detail & Related papers (2020-11-04T23:33:41Z) - Meta Learning for Few-Shot One-class Classification [0.0]
We formulate the learning of meaningful features for one-class classification as a meta-learning problem.
To learn these representations, we require only multiclass data from similar tasks.
We validate our approach by adapting few-shot classification datasets to the few-shot one-class classification scenario.
arXiv Detail & Related papers (2020-09-11T11:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.